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ABSTRACT

Hinson, Jason Ward. Ph.D., Purdue University, August, 2001. Axial Vector and
Pseudoscalar Hadronic Structure in 7= — 7~ 7~ 7 tv, Decays with Implications on
Light Quark Masses. Major Professor: Edward I. Shibata.

After a survey of the basic concepts in high energy physics, a model-dependent
analysis of the substructure in 7+ — 777 F (v, /v, ) decays is presented. The anal-
ysis is based on 145, 000 decays skimmed from a sample of 4.3 x 106 ete™ — 777~
events collected by the CLEO II detector operating at the CESR collider. The
hadronic transition current in the 7* — 7%7*7T (v, /v;) decay is described by
modeling the axial vector a;(1260) and pseudoscalar 7'(1300) primary resonances
and their sub-resonances. An unbinned maximum likelihood fit is used to extract
the complex amplitude for each sub-resonance, producing a distribution that ac-
counts well for the data. Two model variations are also considered, including one
in which corrections due to a more general chiral limit induce pseudoscalar-like
terms from the axial vector components and introduce a non-resonant term. All
models are found to reasonable describe the data. As expected, the decay is found

to be dominated by s-wave a; — pm, which contributed around 70 — 75% of the

7+ — 17 7F (9, /v,) rate, depending on the model used. Statistically significant



xViii

contributions are also found for d-wave pm and p'm amplitudes as well as amplitudes
involving isoscalars, f(1270)m, om, and f,(1270)7. The isoscalar contributions are
particularly prominent, as are interferences involving those terms. As a whole, they
contributed around 15 — 17% to the total 7* — 777 ¥ (7, /v,) rate, depending
on the model. Contributions from the pseudoscalar 7’ sub-resonances are gener-
ally statistically insignificant, though their minimal improvements are shown to
lie where one would expect. Upper limits are placed on each of the considered 7'
contributions at 90% confidence. The results found for the pseudoscalar contri-
butions are used to place a lower limit on the average of the up and down quark
running masses [m = (m, + mgy)/2] that appear in the QCD Lagrangian [57]. This
produced a 90% confidence limit of /(1 GeV?) > 8.3 — 14.2 MeV, depending on
the model. Though that result may be higher than expected, it is reasonable given

the particulars of the analysis.



1. A SURVEY OF CONCEPTS IN HIGH ENERGY PHYSICS

This chapter is committed to providing a broad overview of the most funda-
mental concepts in high energy physics. It serves as both a source of general
introductory material for the analysis discussion to follow and, for the interested
reader, as a condensed guide into the field of physics to which this thesis is ulti-

mately dedicated.

1.1 A Basic Description of High Energy Physics

High energy physics, also known as particle physics, is the field of science
dedicated to studying the most fundamental building blocks of matter and their
interactions. It is framed on the postulate that all matter in the physical uni-
verse consists of elementary particles, and that these particles can be categorized
according to their physical properties. By deducing a relatively small number of
particle types and understanding the basic ways they interact with one another,
particle physics endeavors to produce an elementary framework that describes the

intricacy and scope of the physical universe we experience.

1.2 Early Constituent Models
The modern stage of breaking matter down into elemental parts goes back to

the early 19th century when the belief in constituent particles began to gain ground.



Any substance was believed to consist of many identical particles, each of which
possessed the properties of that substance. By 1803, the chemist John Dalton
had developed the main features of the basic atomic theory, which postulated that
all matter is composed of small particles, called atoms. In 1869, chemists Dmitri
Mendeleev and J. Lothar Meyer independently discovered that the atomic elements
could be arranged by atomic weight to produce an orderly array that organized
them into groups of similar properties. The periodic table helped bring order to the
disarray of the atomic elements, though an ultimate interpretation of the ordering
scheme was not understood until much later.*

In the late 19th century, various studies of the electromagnetic properties of
atoms indicated that they likely possessed internal structure. In 1897, J. J. Thom-
son experimentally showed that beams in a cathode ray tube consisted of charged
particles, each of which had the same charge-to-mass ratio, ¢/m [2]. This crucial
experiment represented the discovery of the electron as a fundamental particle,
and by 1900 it was generally acknowledged that electrons were somehow part of
the atomic structure. Thomson modeled the atom as a positively charged volume
with negatively charged electrons scattered throughout to produce a generally neu-
tral atom. However, the famous Rutherford scattering experiment showed that a
proper explanation of the atom had to place the positive charges into a concen-

trated region. In 1911, Ernest Rutherford proposed a model in which the positively

*Information concerning early atomic theory is found in basic chemistry texts,
including [1].



charged particles (which he previously named protons) were contained in a central
nucleus while the negative electrons orbited the nucleus, picturing the atom as
similar to a planetary system [3].

Further experiments showed that the nucleus itself contained structure, and in
1932, James Chadwick discovered the neutron, a neutral particle that accompanies
protons in the nucleus of the atom [4]. Thus, we picture the matter around us as
being composed of electrons, protons, and neutrons. In the 1960’s, first theory and
then experiment concluded that protons and neutrons possessed internal structure
as well, and were made of particles called quarks. These particles will be discussed
in Section 1.9; however, the discovery of quarks and their significance came about

only after a much more complicated picture of the fundamental particles arose.

1.3 A Plethora of Particles

While electrons, protons, and neutrons produce the matter we interact with
daily, many particles of matter have been discovered in this century that do not
generally exist within the atom. These exotic particles have short lifetimes and
quickly decay into more stable particles; thus they are not part of ordinary matter.
However, these particles can be produced in high energy collisions. Such collisions
can occur naturally as high energy particles from outer space collide with particles
in our upper atmosphere. Study of these cosmic rays and the particles they produce

began in the 1930s.



By the early 1950s, physicists were moving from cosmic ray studies to more
controlled laboratory experiments performed with particle accelerators. Particle
accelerators use electric fields to accelerate charged particles to high energies and
collide them with other particles. The energy released in these collisions can form
exotic short-lived particles that can then be studied by instruments placed around
the interaction point (see Section 1.15 for more information about particle manip-
ulation and detection).

The study of cosmic rays and subsequent experiments with particle acceler-
ators has generated a large number of particle discoveries. One of the earliest
such discoveries was that of the muon (x) in 1937 by Carl D. Anderson and Seth
Neddermeyer [5]. It was a charged particle with properties similar to that of the
electron, though it had a much grater mass and decayed into other particles in
a short period of time. Knowing that muons were not part of the fundamental
makeup of everyday matter, a theorist named Isidor Isaac Rabi is said to have met
its discovery with the exclamation “who ordered that?”

The detection of the pion (7) [6] and the kaon (K) [7] in cosmic rays in 1947
is sometimes considered the birth of the most modern era of particle physics as
it became obvious that uncommon particles existed and had to be taken into
account to properly describe the physical universe. In the 1950s, the Lambda (A)
particle and the heavier Sigma (X) and Cascade (Z) particles were discovered [8—
10]. These particles were called hyperons; and, along with kaons, they possessed

odd properties compared to protons, neutron, and pions. They were thus assigned



a unique attribute aptly called strangeness. In 1953, the electron neutrino (v,) was
discovered [11]. Predicted in 1930 by Wolfgang Pauli, it is a neutral cousin of the
electron that possesses little or no mass [12]. Neutrinos are stable particles, but
they rarely interact with other matter. In 1963, the team of Schwartz, Lederman,
and Rochester discovered a correspondent cousin to the muon, the muon neutrino
(v,) [13]. In 1977, Martin Perl discovered the tau (7), a charged particle with
properties similar to the electron and muon but much heavier than either [15].
Like the electron and the muon, the tau was assumed to have a nearly massless
companion neutrino (v,), and while analyses clearly indicated that tau decays
produce neutrinos, the first direct evidence for the distinctive tau neutrino was
recently produced in 2000 at Fermi National Laboratory (FNAL) [14].

To date, over 200 different particles have been discovered, producing a seem-
ingly complicated picture of particle physics.* However, through the years a model
has also been developed to describe all of these particles with a much smaller list
of fundamental particle types and their interactions. The modern explanation of
these fundamental particles is called the standard model, and it is discussed in
Section 1.9. The standard model not only incorporates the fundamental particles
of matter, but also describes the forces between the particles. The understanding
of these forces has been developed over many years, in conjunction with the study

of the particles of matter themselves.

*Part of the reason quarks were postulated was to help explain this particle
700.



1.4 The Four Forces of Nature

In order for particles to form the universe that we experience, they must obvi-
ously interact with one another. Today physicists identify four fundamental forces
necessary to describe all physical interactions. They are gravity, electromagnetism,

the strong nuclear force, and the weak nuclear force.

1.4.1 Gravity

In 1687, Isaac Newton published work claiming that any two massive bodies
attract one another by a force proportional to the product of the two masses and
inversely proportional to the square of the distance between them [16]. This sug-
gested that a force, gravity, somehow acted over great distances to allow one body
to influence another. This was the first explanation of a modern day force, though
many years later Albert Einstein would change our understanding of gravity.

In 1905, Albert Einstein published his special theory of relativity, which com-
bined space and time into a single fabric, the space-time manifold [17]. The re-
lationship between space and time explained how different observers moving with
respect to one another would measure space and time differently, and how all such
observers would measure the same, constant speed of light (¢). This new relation-
ship between moving observers required a change in the way we define energy and
momentum so that these quantities would be conserved for all such observers, and
this lead to the realization that mass itself was simply a convenient form of energy

(E = mc?). In 1916, Einstein produced the general theory of relativity, which



successfully explained relativity in light of gravitation [18]. It was effectively a
new theory of gravity in which curved space-time replaced Newton’s gravitational
fields. Objects are said to travel on what seem to be straight lines in space-time;
however, mass—and in fact any form of energy—warps space-time into a curved
manifold, and the straight lines through space and time become curved. Our three-
dimensional view of objects moving through curved space-time is what we interpret
as a gravitational force.

In Section 1.8, it will be noted that gravity still doesn’t fit into the picture of
the other three fundamental forces as neatly as physicists would like. However, it
is certainly one of the four fundamental force of nature, and in relative terms, it is

the weakest of the four (requiring very large masses before its effects are evident).

1.4.2 Electromagnetism

Electricity and magnetism were once considered entirely separate subjects®.
However, in 1820, Hans Christian Oersted discovered that a compass needle could
be deflected by an electric current in a wire, causing the needle to orient itself
perpendicular to the wire. Within days of hearing of the discovery, Andre Ampere
hypothesized that all magnetic phenomena were caused by charged particles in
motion, and in 1831, Michael Faraday discovered that a changing magnetic field

induced an electric current in a nearby wire loop. Maxwell and Lorentz finished

*A history of the development of electromagnetism can be found in a variety of
basic texts including [19].



off the theory to combine electricity and magnetism, which were then understood
to be two aspects of the same force: electromagnetism.

Relatively speaking, the electromagnetic force is many times greater than the
gravitational force (the electromagnetic repulsion between two electrons, for exam-
ple, is 10?2 times greater than the gravitational force between them). Electromag-
netism is the force that holds negatively charged electrons in their orbits around
positively charged nuclei. When two objects meet, it is the electromagnetic force
that keeps one from passing into the other. It is the force behind friction as well,
and it produces the binding forces in chemistry. Waves of electromagnetic energy
range from radio waves to visible light to microwaves to powerful gamma rays.
Electromagnetism is obviously a pervasive force, and its effects are important in

both the microscopic and macroscopic realms.

1.4.3 The Strong Force

The last two forces are termed “nuclear” forces because their effects are most
prominent within the nuclei of atoms*. The strong force is believed to involve three
“strong charges” and their inverse counterparts, termed colors and anticolors in
a theory called chromodynamics. The aforementioned quarks possess these color
charges and are attracted to one another in various ways via the strong force,
thus forming various particles such as protons and neutrons. Protons and neu-

trons within a nucleus are held together by the strong attraction between their

*Basic texts containing information concerning both the strong and weak nu-
clear forces include [23,25].



constituent quarks (otherwise, the nucleus would fly apart due to electromagnetic
repulsion between the positive protons).

As its name might suggest, the strong force is the strongest of the four forces;
however, it is found to be confined within extremely short-ranged interactions. For

that reason, we do not experience the strong force in the macroscopic domain.

1.4.4 The Weak Force

The weak nuclear force is comparatively stronger than gravity but weaker then
electromagnetism. Like the strong force (but for different reasons, see Section 1.8.7)
the effects of the weak force are confined to a limited range. Because of its weak-
ness and limited range, the weak force is generally dominated by the strong and
electromagnetic forces, and it does not play a direct role in holding matter together
(such as the strong force holding quarks together, the electromagnetic force hold-
ing electrons in their orbits in atoms, and the gravitational force holding planets
in their systems). However, in cases where those other forces cannot cause an in-
teraction, it is possible to directly observe the weak force. For example, a neutrino
(with no charge and no “color”) can interact with an electron via the weak force,
but not through the electromagnetic or strong forces. It is also possible to observe
the weak force in interactions that cause one type of quark to change into another
(because such a change is forbidden in strong and electromagnetic interactions, as

will be noted later).
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The weak force is perhaps best known for its role as a mediator of particle
decay (another property of forces, as discussed later). The most well known weak
decay is nuclear beta decay in which a neutron in the nucleus of an atom decays
(through the weak force) into a proton, an electron, and an electron antineutrino
(n — pe~ ¥,). Further understanding of the relationship between forces and decays

requires a discussion of quantum mechanics, as provided in the next few sections.

1.5 A Brief History of Quantum Mechanics

In the year 1900, Max Plank worked to describe a process known as black body
radiation (radiation emitted by an object that absorbs all energy impinging on
it, thus appearing black) [20]. To successfully describe the energy levels of such
radiation, Plank took an extraordinary step by assuming that for a given frequency,
only certain special energy levels could be emitted (specifically, the energy emitted
at frequency v had to be an integer multiple of E = hv, where h is now known as
Plank’s constant). This effectively quantized the energy levels for a given frequency,
and Plank won the 1918 Nobel Prize for Physics for this work.

In 1905, Einstein published a paper concerning the photoelectric effect, which
further espoused the quantization of energy [21]. It was known that light striking
certain metals liberated electrons from the metal, but regardless of the light’s
intensity, it would only cause this photoelectric effect if its frequency was above
some threshold (given the metal). Einstein suggested that energy from the light

could not simply build up in the electron until it was liberated; rather, the light



11

had to interact in specific packets of energy (photons) dependent on the frequency
of the light as Plank had suggested (E = hv). Thus, to liberate an electron, one
quanta of light energy had to be strong enough to do the job—the frequency had
to be above some minimal level while higher intensity (or number of quanta) alone
would not suffice. Light had been known to travel like a wave, but Einstein’s
proposal suggested that it interacted with matter as particle-like quanta. Einstein
won the 1921 Nobel Prize for Physics for this work

In 1913, Niels Bohr applied quantum theory to the structure of the atom [22].
Light emitted by excited hydrogen atoms had been observed to only possess certain
energies. The specific levels of light energy emitted could be displayed as discrete
bands in a light spectrum and was known as the Balmer series (measured by
Johann Balmer in 1887 [23]). It was assumed that the light must come from
electrons in the atoms losing energy as they shifted from higher energy states to
lower ones. However, physicists were puzzled as to why such energy should only
come at discrete levels or why the electrons wouldn’t simply loose all their energy
and fall into the nucleus. Bohr was able to account for the Balmer series with
considerable accuracy. Under his model, electrons in the atom could only exist
at specific distances away from the nucleus. Those distances had to be consistent
with specific orbital angular momenta: L = mvr = nh where n = 1,2, 3, ..., thus
quantizing angular momentum with a quantum number, n. The electrons could
then only exist at certain energy levels and could only absorb and re-emit energy

that allowed them to make quantized jumps between the energy levels without ever
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existing in intermediate energy states. This explained why only certain, specific
bands of light were seen in the Balmer series; however, the model was not complete,
and the field of quantum mechanics exploded to better explain atomic theory and
other experimental data.

In 1925, Werner Heisenberg developed what would turn out to be a complete
and consistent description of quantum mechanics using matrix algebra. It was
intrinsically a highly mathematical formulation. In 1927 he developed his famous
Uncertainty Principle, which claimed that for certain sets of observables (called
non-commuting), it was impossible for a quantum mechanical system to possess
precise values for each observable in a given set. The most often noted set of non-
commuting observables is that of momentum (p) and position (z), such that the
uncertainty in these variables must be constrained by the inequality ApAz > h/2
(where £ is a convenient notation for %) A closely related set of non-commuting
observables is that of energy and time* (i.e. the time at which a system is measured
to have the given energy), thus AEAt > /2. [23]

While light was understood to exhibit both wave-like properties (in describing
its motion) and particle-like properties (by interacting only as energy “packets”),
in 1924 Louis de Broglie postulated that normal particles, like electrons, also pos-
sessed wave-like properties. The matter-wave of a particle at a given momentum

(p) was claimed to have a de Broglie wavelength of (A = h/p). [23]

*For an indication of why energy may be connected to time as momentum is
connected to space, see Appendix B.
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However, it was Erwin Schrodinger who, in 1926, formulated a more complete
wave-like description of particles whose wave functions were determined from the
Schrodinger wave equation—one of the most basic equations of quantum mechan-
ics formed from classical Hamiltonian equations (see Appendix C). The square
of a particle’s wave function was then interpreted by Max Born as the probabil-
ity density of finding the particle . This provided a new picture of the physical
universe: point-like particles moving in precise causal paths were replaced by cloud-
like formations describing the probability of interacting with the particle over a
given region. In atomic theory, no longer did the electrons follow precise orbits,
but rather they existed in cloud-like “orbitals,” which described their probability
distribution around the nucleus depending on quantized variables: their average
distance from the nucleus and their orbital angular momentum. [23]

Meanwhile, better instrumentation and measurements revealed that the bands
in the spectrum of light emitted by excited atoms were divided into smaller bands
than previously noted (as mentioned above). Contemporary applications of quan-
tum mechanics to atomic theory did not explain this fine structure splitting. In
1925, Wolfgang Pauli suggested a new quantum variable that gave each electron
in an atom a “two-valuedness” and provided a more complete picture of quan-
tum atomic theory. Samuel Goudsmit and George Uhlenbeck attributed this new
property to an intrinsic angular momentum possessed by electrons. The energy
levels of electrons in an atom weren’t simply a property of the orbital they were in

(and thus their orbital angular momentum), but also depended on the alignment
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of their intrinsic angular momentum. This provided more energy levels for the
electron to “jump” between and thus predicted more energy bands in the spectra
of light emitted by the atoms, properly accounting for the additional fine structure
splitting seen in the light spectra. The resulting atomic theory was also able to
explain the variety and characteristics of all known atoms, neatly accounting for
their places the periodic table. [23]

The intrinsic angular momentum of an electron was imagined to be created
as if the electron were a small spinning ball of charge, and the quantum property

7 Electromagnetic effects caused by the “spin” of

was thus given the name “spin.
a particle (which gives it an intrinsic magnetic moment) can be measured along
some given axis, often considered to be the z axis. Along that axis, a given particle
will exhibit a specific, quantized angular momentum value (equal to some multiple
of ii/2, depending on the particle type) that is either aligned or anti-aligned with
that axis, thus providing a “two-valued” quantum number. Subsequent study of the
electron “spin” indicated that its electromagnetic effects where not fully consistent
with an actual spinning ball of charge, and thus the term “spin” is something of a
misnomer for describing the quantum property of intrinsic angular momentum.
Another important step in quantum mechanics came when Paul Dirac, in 1928,
provided an application of quantum theory consistent with special relativity (whose
energy equations are intrinsically of second order). The resulting Dirac equation

provided important insight into the quantum mechanical description of the elec-

tron. One result was the prediction of electrons in both positive and negative
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energy states. Dirac interpreted the negative energy states in terms of particles
with identical mass to the electron but with the opposite charge. He predicted
these antielectrons (or positrons) in 1931, and they were established experimen-
tally in 1932. Dirac further predicted that for all particle types there existed
associated antiparticles, and this antimatter concept has since been experimen-
tally verified, becoming an integral part of high energy physics. See Appendix C
for more information. [23]

In 1941, Richard Feynman developed a description of quantum mechanics in
which one considers every single possible way in which a system could progress
from one state to another. For example, a photon could move from A to B along
a straight path, along a curved path, along a path that bounced around in space
a few times before reaching B, along a path that paused half way between the
two before continuing, etc., etc. Each possibility was considered to have the same
overall probability amplitude, but given the different paths taken, each had a
different phase (in essence, the amplitudes were like clock dials pointing in different
directions in a conceptual “amplitude space”). When one properly combined all the
amplitudes from all the possibilities (essentially adding the vectors in the amplitude
space) the result gave the overall probability amplitude of the given event. As it
turns out, the amplitudes from many of the “odder” possibilities can tend to cancel
one another out in the final result, and the path of “least action” generally provided

the largest contribution to the probability amplitude (see Appendix A).
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Though this technique was mathematically equivalent to the matrix and wave
formulations mentioned above, it provided what many felt was a more natural
way of thinking about quantum mechanical probabilities: The probability of an
event was a combination of all possible histories that could conceivably create that
event. All the possibilities were treated equally, with equal amplitudes, and only
the action of each gave it a different phase. When combined in a natural way,
this “sum over histories” provided the final probability amplitude of the event.
Feynman also created diagraming tools (known as Feynman diagrams, which are
discussed in Section 1.8.5) to help visualize and apply his technique to various
particle interactions. Feynman’s technique was first applied to the quantum me-
chanical description of electromagnetic interactions (quantum electrodynamics, or
QED), and its success in describing practically all electrodynamic phenomena has
strongly associated Feynman’s name with QED [23, 24].

A wide variety of contributions by these and other important players in the
realm of quantum mechanics has produced a current theory that is extremely
accurate in its description of experimental outcomes and is arguably the most
well established theory in modern physics. It has radically altered our descrip-
tion of fundamental physical phenomena (and also suggested strange metaphysical
concepts such as non-locality, the breakdown of causality, the existence of many
“parallel” realities, etc.—all of which are beyond the scope of this dissertation).
Though debate continues over the philosophical implications of quantum mechan-

ics, its mathematical description of physical phenomena provides an undeniably
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powerful physics tool. A general overview of its description of physics will be

presented in the following section.

1.6 The Quantum Mechanical Description of Physics

In quantum mechanics*, particles are treated mathematically as wave func-
tions in space-time (typically denoted 1(x), where x is a space-time four-vector
as discussed in Appendix B). The position of the particles over time is de-
scribed by a probability distribution derived by properly squaring the wave function
(J¢|> = T1) in the most general case—see Appendix C). Measuring some physical
property of a particle (e.g. its momentum, energy, position, etc.) is represented
by an operator acting on the wave function. The expectation value of a measured
property ¢ (with an associated operator Q) is the average measured value of ¢
expected from a system in a specific state. It is determined from the equation
(¢) = [t (x)Qu(x)dx, which is sometimes denoted (g) = ()|Q[¢)). Examples of
often used operators are the total energy (or Hamiltonian) operator, H =il
and the momentum operator, p; = —iha%i (or p = —zhﬁ)

The actual form of a wave function for a given situation is derived from a
proper wave equation (such as the aforementioned Schrédinger wave equation or
Dirac equation discussed in Appendix C). In general, the wave equation is found
by taking the classic equation of motion (from the Hamiltonian) for the given

situation and replacing measured properties with their associated operators acting

*Information in this section can be found in a variety of texts including [23,25].
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on the wave function. The form of the wave function is then derived so as to satisfy
the wave equation. Such a derivation is generally non-trivial, though solutions are
known for certain special cases (such as a classic harmonic oscillator).

A wave function can be an eigenstate of a given operator such that the effect
of the operator acting on the wave function is equivalent to multiplying the wave
function by a scalar contained within some discrete set of constants (the associated
eigenvalues). For example, for a static state (where ¢ is not a function of time),
1 is an eigenstate of the Hamiltonian operator such that Hy = ih%—f = E1) (where
E is the energy of the system). Note that in this case, the wave function necessarily
has the form

(@ 1) = e M o(F) = T(t)o (@), (L1)

where ¢ is the form of the wave function at t = 0, T = e *#/" is an operator
describing the time evolution of the wave function, and H does not depend explic-
itly on t. Note that the inverse of 7' (7" such that T-'7 = 1) is also its complex

conjugate (T’l =Tt = e“g/h) and its is thus said to be unitary. This also means

that
YT, 1) = T(t)o(T) = G{ (BT (1) (1.2)

The above representation of a static state is known as the Schrédinger repre-
sentation, which attributes the time dependence of the system to the wave function
itself. There is also the Heisenberg representation of the wave description, which

attributes the time dependence to the operators involved. If one notes a generic
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operator without time dependence as Qo and its time dependent representation as

@, then the expectation value must be the same in either representation:

(@) = / () O (#)dx = / (@, )00 (#, 1) dx. (1.3)

where in the first the time dependence is contained only in Q (the Heisen-
berg representation) and in the second it is contained in the wave function, v
(the Schrodinger representation). Using Equations 1.1 and 1.2, one finds that
V(&) Qo (1) = (BT Q0T (x)tho(Z). Applying this to Equation 1.3 one

finds

Q = T71Q0T7 (14)

which gives the time dependence of the operator () in the Heisenberg representa-
tion.
If there is no further, explicit dependence of Q on ¢, then the time derivative

of the operator (multiplied by i% for convenience) is

dQ ATV < o .~ dT
zhﬁ = ih 7 QoT + ihT QOE

H - . -~ [ ~—iH
— iR (%7“) O0T + ihT10, (T ; )

= —H(T7'QT) + (T7'QoT)H

H = [Q, H]. (1.5)

&

= —HQ+
The notation [Q, H] above is the commutator of Q and H. If one finds that [Q, H] =

0 (in which case Q is said to commute with the Hamiltonian) then dQ/dt = 0, such

that the Q operator is constant over time. In such a case, its expectation value,
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(q), must be a conserved physical quantity. Therefore, an operator that commutes

with the Hamiltonian indicates a conserved physical observable.

1.7 Quantum Mechanical Properties of Particles

Properties of wave functions are extremely important for identifying particle
types in high energy physics. The wave function description of particles belonging
to a specific type will have specific properties. Understanding how a particle’s wave
function behaves under various operations or transformations defines a variety of

particle characteristics. A number of these transformations will be discussed here.

1.7.1 Bosons and Fermions

One important transformation is exchange of identical particles. One can con-
sider a system consisting of two identical particles, which is described by a single
wave function. If one interchanges the two particles in the wave function, the sta-
tistical distribution of the particles (described by the square of the wave function)
should not be affected since they are identical. Thus, the wave function itself could
be completely unaffected by such an exchange, or it could could become the neg-
ative of its former self (which wouldn’t affect its square): v, , — 1, . Particles
with symmetric wave functions follow the former rule. They have integral spin
(0, h, 2h, ...), obey Bose-Einstein statistics, and are thus called bosons (such are
the particles that mediate forces as discussed below). Particles with anti-symmetric
wave functions follow the latter rule. They have half-integral spins (5h, 24, ...),

obey Fermi-Dirac statistics, and are thus called fermions (which include all the
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fundamental particles that make up matter: leptons, like the electron, and quarks,

which make up protons and neutrons). In summary:

bosons : ¢, — +yl, symmetric,
(1.6)
fermions : 7?{,2 — —wil anti-symmetric.

These characteristics are integral in understanding interactions between par-
ticles via the different statistical rules followed by each type (as named above).
For example, the total wave function of a set of identical particles can be
given as a product of two functions: one describing the spatial distribution of
the particles, a(space), and one describing their spin states, ((spin), such that
1 = a(space)(spin). For a set of identical fermions, this function must be anti-
symmetric—thus if two of the particles are exchanged, one must be able to dis-
tinguish the function before and after the exchange. If all the fermions are in the
same spatial state, then a would obviously not change under a particle exchange
(it would be symmetric). Thus the spin state, 3, must be anti-symmetric. This
cannot be the case if two or more of the fermions have the same spin. Thus, a
system of identical fermions in the same spatial state can consists of, at most,
two fermions with spins that are in different directions (or anti-parallel). For this
reason, only two electrons in an atom can share the same orbital position state
provided their spins are oppositely aligned (one with spin “up” and one with spin
“down”). This is the “two-valuedness” of the electrons produced by their spins as

noted earlier, and it causes the Pauli exclusion principle.
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However, for identical bosons, the overall wave function is symmetric. Many
bosons can exist in the same spatial state (making a symmetric under particle
exchange) and with their spins aligned (or parallel, thus making § symmetric
as well). This produces an acceptable, symmetric wave function in which many
bosons share the same quantum state. An example of this is a laser in which many
identical photons (which are bosons) can exist in the same physical space, thus

producing a powerful, narrow beam of energy.

1.7.2  Parity

Another transformation useful for characterizing quantum systems is spatial
inversion of coordinates (z,y,z — —x, —y, —z), which is known as the (spatial)
parity operation: Pi(r) = t¢(—r). Since repeating the operator twice clearly
results in no net change (P2i(r) = Pi(—r) = 1)(r)), the parity operator is unitary.
If there is an eigenvalue (P) of the operator, it will be +1. For some particle types,
their wave functions are intrinsically symmetric under the parity operator (having
even parity or P = +1), while some particles have odd parity (P = —1). It is also
possible for a system to have no parity eigenvalue (e.g., if ¢V = cosz + sinz then
Py = cosz — sinxz # +1). Note that the parity operator can also be achieved
by performing a “mirror reflection” in one dimension (e.g., + — —x) and then
rotating about that dimension by 180°. Since rotational symmetry is usually well
established, it is often useful (and easier) to picture and examine parity as simply

a mirror reflection.
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The parity of a system of particles is determined by the intrinsic parity of each
individual particle and by their orbital angular momentum (due to the quantum
properties of angular momentum and its relationship to spatial inversion). If the ith
particle has an intrinsic parity F;, and the system has a total angular momentum

quantum number, L, then the total parity eigenstate of the system is given by

P =TL(P) (-1

1.7.3 Charge-Conjugation

The charge-conjugation operation (é) provides another important particle char-
acteristic. Under this operation, the charge of the particle is reversed, effectively
changing the particle into its antiparticle (even in the case of neutral particles).
As with (spatial) parity, charge-conjugation is obviously a unitary operator, and it
is possible for a neutral particle to possess either even (C'= +1) or odd (C' = —1)

charge-conjugation parity. For a particle (or system) with an overall charge, its

wave function cannot be an eigenstate of the charge-conjugation operator.

1.7.4 Time-Reversal

As its name implies, the time-reversal operation (T) inverts the direction of time
in the wave function description of a system (¢t — —t). This is another example of
a unitary operator. In classical, macroscopic cases, it is possible to imagine some
situations that are invariant and others that are non-invariant under time-reversal.

For example, since Newton’s law of gravitation does not involve time, a movie of a

satellite going around the earth looks just as realistic going forwards as backwards.
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On the other hand, many thermodynamic phenomena do not display macroscopic
reversibility (a movie of a ball bouncing to a stop—converting its energy into heat
energy—will look improper when run backwards). However, for each microscopic
interaction, the probability distribution of the interaction is invariant under time-
reversal. The arrow of time visible in the macroscopic realm is a factor of the
probability (or improbability) of various initial conditions.

The most important aspects of time-reversal come from its relationship with

parity and charge-conjugation, which will be addressed in Section 1.10.4.

1.7.5 Isospin

The isospin property of a quantum mechanical system is a somewhat contrived
yet useful notion. It was introduced at one point to treat protons and neutrons
as different charged sub-states of a single particle, the nucleon [25]. Isospin is
not associated with angular momentum or quantum mechanical spin; however,
its properties are defined with the same mathematics. In an analogy with spin,
nucleons are said to possess an isospin with a z component of I3 = i%. The
charge of a nucleon is then given as I3 + %* The proton is thus assigned an
isospin of I3 = —i—% and the neutron is assigned an isospin of I3 = —%. The overall
isospin of a nucleon is pictured as a vector in a three dimensional “isospin space,”
and a particle or system can be classified by how its wave function is affected

under rotations in isospin space. The most useful aspect of the isospin concept is

*Here and throughout this text, charges are noted as multiples of the electron
charge, e.
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that isospin is conserved in strong interactions, which defines certain allowed and

disallowed decays.

1.7.6 G-Parity

Another somewhat contrived property assigned to quantum mechanical systems
in high energy physics is called G-parity. It is a combination of a rotation (é) in
isospin space (of 180° about the isospin-y-axis) followed by a charge-conjugation
operation (C) such that G = C'R. The usefulness of this property comes partially
from the fact that while charged systems cannot be eigenstates of the charge-
conjugation operator, it is possible for such a system to be an eigenstate of the
G-parity operator. While this information is completely contained within isospin
and charge-conjugation characteristics, G-parity provides a shortcut to the more
useful information. As with all the previously noted characterizations, G-parity is

most useful in establishing decay and interaction rules given G-parity conservation

in various situations.

1.7.7 Lorentz Behavior

In four dimensional space-time there is a set of transformations (such as trans-
lations, rotations, and reflections) called the Lorentz group. In high energy physics,
how a system behaves under such transformations helps define the system as one
of five types. As an illustration, one can consider how a three-dimensional system

behaves under the parity operation to describe these types.
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Some systems do not have any dimensional components and thus do not change
under the various transformations, making them scalars. However, there are scalar-
like systems that do not have dimensional components but which change sign
under the parity operation (P = —1), and they are termed pseudoscalars. A
three dimensional vector (¥) with dimensional components (v®, v¥.v%), will reverse
sign under parity—when all the spatial dimensions are reversed one finds P7 =
(—v", —vY. — v*) = —¥ such that P = —1. Systems that behave the same way
under such transformations are thus called vectors. However, there is another set
of vector-like systems that do not change sign under parity. For example, the

=,

cross product of two vectors (@ x b) is a three-component object like a vector, but
under parity the two minus signs (one from @ and one from l;) essentially cancel
so that the cross product is invariant under parity. Systems with one component
per dimension that transform in this way are termed axial vectors. Finally, some
systems in high energy physics require two indices to specify each element of the
system and behave like second rank tensors.

These transformation identities are applied to specific particles by noting their
intrinsic spin (J) and parity (P), which together are generally noted JI as a
convention. Particles with no spin have no inherent dimensionality and could be
scalars (JP = 0T) or pseudoscalars (J¥ = 07). Particles with spin and definite
parity can either be vectors (e.g., J¥ = 17) or axial vectors (e.g, JI' = 17).

Similarly, applying these concepts to isospin space, particles with I = 0 are termed

1soscalars while a particle with I = 1 would be an isovector.
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1.8 Quantum Mechanical Treatment of Forces

In addition to describing particles via wave functions, quantum mechanics also
provides a parallel description of forces. In classical physics, force interactions
between two particles are said to be caused by the potential field of one particle
acting on the other. In quantum mechanics, the potential field is essentially rein-
terpreted as a wave function for a quanta (specifically, a boson) associated with the
given force. A force interaction is thus pictured as the exchange of bosons between
two particles, with each force having its own associated boson(s). Because these
quanta possess energy, conservation laws would not generally allow for this descrip-
tion; however, quantum mechanics grants latitude to energy conservation over a
limited time via the Uncertainty Principle. If the overall uncertainty in a system’s
energy is AFE over a given time, At, then the Uncertainty Principle requires that
AFEAt > h/2. Therefore, a quanta can exists over that limited time without dis-
turbing the Uncertainty Principle if its energy (§F) is such that 0 EAt < h/2. The
quanta can exist for a limited time given its energy without being forbidden by
conservation laws. Such ephemeral quanta are called virtual particles. Virtual par-
ticles are no more or less realistic or observable than the classical potential field,
only their effects as a force are measured.

Because of the connection between the time a virtual particle can exist and
its energy, the range of a force is limited by the mass of its associated field quan-
tum [25]. If it has no mass, its energy could be infinitesimally small, it could exist

for a long period of time given the Uncertainty Principle, and it could thus con-
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ceptually reach an infinite range. However, a massive quanta must have an energy
no smaller than its mass energy. The time such a quantum could exist is thus
limited to At < h/2mc?, which restricts its range (given the limit of light speed)
to cAt < h/2me. This connection was first established in 1935 by Hideki Yukawa
in an attempt to explain short-ranged forces between protons and neutrons in the

atomic nucleus.

1.8.1 A Simple Central Force

As an example of the quantum mechanical description of a force, one can con-
sider the description of a free, spinless virtual boson associated with a central force
(a force emanating from a single point, like the static potential of a point charge).
For generality, the boson is allowed to have a mass, m. Further, it is associated with
a static potential whose time derivative is thus zero. Given this, one can describe
the potential, V(r), as the wave function of a free static particle (0¥ /0t = 0) that
satisfies the Klein-Gordon wave equation (see Appendix C). Here one evaluates
the equation in spherical coordinates given that this is a central force emanating

from the origin:

v = £ 9 <r2av(r)> _ ), (1.7)

V(r) = Lemrmein, (1.8)
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where ¢ is a constant from the integration and is identified with the general strength
of the force. If the boson mass is set to zero, then this equation becomes the familiar
central potential of, for example, an electrostatic point charge e (V, = e/4megr) or
a gravitational point mass mg (V; = Gmg/r).

This approach was proposed by Yukawa [25] in—as history would show—a
somewhat too simplistic attempt to describe the strong force; however, though
this description of a central force is simplistic, it has general uses as will be seen
below.

In practice, each fundamental force has an associated coupling constant that
is related to ¢ above and thus describes the relative strength of each force. The
coupling constant for each fundamental force will be discussed in Section 1.8.7. In
general, coupling constants vary depending on the amount of momentum trans-
ferred in the interaction, but typical ranges are often used to discuss the relative

strengths of the different forces.

1.8.2 Scattering Cross-Sections

The probability of a given force interaction is usually expressed in terms of a
cross-section. One considers a particle, X, moving towards another particle, Y,
such that X is “scattered” due to a force interaction as represented in Figure 1.1.
After the interaction, there is some probability that X will be moving within some
range df of a given angle, 6, with respect to its initial motion (see the figure).

The region such a particle would enter is defined by a solid angle, df2, given the
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scattering angle, #. The probability that X will be within a given solid angle is
related to an area, do, through which the particle must pass before the interaction
to end up within that solid angle of interest afterwards (again, see the figure). The
larger the region through which the particle could pass to end up in the df2 of
interest, the more likely that particular interaction will occur. The do area is the
cross-section—the effective target area presented to the X particle for scattering
into dS) (as a function of the direction, 0, around which df2 is defined). Therefore
the cross-section of a given event is proportional to the probability of that event

occurring.

Possible paths of
beam particle X

db ™1
b

L—
—

\
Target Particle Y

\
\ Element of beam area

do=21bdb Element of solid angle

dQ=2mnsn 6d §
Figure 1.1

Elements in the definition of the scattering cross section. All beam particles passing
through the area do are scattered into the solid angle dS2.
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In practice, X would generally represent a beam of particles aimed at a set of
target particles, Y. The cross-section, do, would be defined per target particle and
in terms of the rate at which particles are scattered into df) and the rate at which
incident particles pass through a given area (i.e., the flux of the incident beam):

p rate of scattering into df2 (1.9)
o= : :
(flux of incident beam)(# of target particles)

The cross-section area is most often given in units of barns where 1 barn = 10728 m?.

A cross-section can also be expressed in terms of the momentum transfer needed
to send the incident particles into the given df2. In that case, the concept of
“scattering into a range df) around a given angle, 6”7 is generally replaced with
“transferring a squared momentum within a range dp? of a given momentum, p*”.

Given the cross-section of a particular process, o, the rate, R, at which it
will occur in a chosen experiment can be expressed in terms of an instantaneous
luminosity, L(t):

R = L(t)o. (1.10)

The cross-section is generally a property of the particular interaction while the
luminosity depends on the specifics of the experiment in which the interaction
might be produced. For example, in an experiment in which /Ny incident particles
are made to collide with N, target particles in an effective cross-sectional area A

and at a frequency rate of f, the instantaneous luminosity is given by

NN,
A Y

Lt)=f (1.11)

and is typically given in units of cm =251
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The total number of of events generated over a given time is then found by

integrating the rate:

N = /Rdt - /aL(t)dt - U/L(t)dt oL, (1.12)

where L is thus the integrated luminosity over a given time and is often given in

units of inverse picobarns (pb™'), inverse femtobarns (fb™'), etc.

1.8.3 Describing Transitions

To describe transitions arising from force interactions (or particle decay) one
can consider the probability of a system initially in some well-defined state, ¥;,
being later found in some final state, ¥, as the result of some force potential, V/,
which comes into play at time ¢ = 0. The potential changes the initial energy state
described by the Hamiltonian, H , to produce the transitional Hamiltonian given
by

H =H+V. (1.13)

This is said to be a perturbed form of the initial (unperturbed) Hamiltonian,
and the potential provides the perturbation. The resulting calculations are thus
handled by perturbation theory. To allow easy calculations below, one considers
the potential to be a relatively small change resulting in a weak perturbation and
a small transition rate (i.e., a first-order perturbation).

If one considers the initial state of the system to be stationary, then it will

be an eigenstate of the initial Hamiltonian, H, and its energy will be one of the
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associated eigenvalues:

HUY,(&,t) = B, ¥, (Z,1). (1.14)

Initially (¢ < 0) the system is in the eigenstate E;. At time ¢t = 0 the transition

Y

potential is “turned on,” and the resulting transition places the system into some

other state—any of the possible eigenstates of the unperturbed Hamiltonian. Thus,
the general form of the wave function can be written as a superposition of all the

possible eigenstates:

oo

> cn(t) e, (1.15)

n=0

S
\_&l
=

I

where ¢, (t) is the time-dependent probability amplitude for being found in the
n-th state. Thus before t = 0 one has ¢,—;(t < 0) = 1 while ¢,,;(t < 0) =0,
placing it in the well-defined initial state. After t = 0, ¢, will be determined by
the specific form of V.

Applying the perturbed Hamiltonian to the wave function yields the following:

HY = iho¥/ot,

K

{FI + V} Co(t)hpe EntIh = ZhZ% [ (t) e Bt/
n=0

0

3
I

NE

{En 4+ V}ea(t) et = 3 {zh% + Encn(t)} et

dt
n=0 n=0
(reversing sides) i Z %\Pn = Z Ven(t) e Ent/h, (1.16)
n= n=0

It is of interest to determine the probability amplitude for a given final state,
cf, and to that end one can multiply both sides of the above equation by \I/} on

the left followed by integration with respect to volume in #. The wave function \I!}
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will act on ¥, and V. Because ¥; and ¥, are eigenstates and thus orthogonal,
the integral f\IJJ}\Ifnd% will be 0 except when f = n, in which case it is 1. The

proposed operation thus produces the following:

. > an t 3
n=0

M]3

cn(t) {/Q/J}V@/Jnd?’x} e~ U En=Ep)t/h
0

3
I

L (dey\ = —i(En—E;)t/h
zh<ﬁ> = ;cn(t)]\/[nfe PR (1.17)
where
M, = /w}vwnd%. (1.18)

is called the matrix element controlling the transition from state n to state f.

As previously noted, one considers here a first-order perturbation, making the
transition rate from the initial state small such that over a given time ¢ one can
consider ¢,(t) on the right side of Equation 1.17 to be relatively constant over
time and insignificant for all but the initial state: ¢;(t) ~ 1, ¢,;(t) ~ 0. Then,

assuming the potential is static, an integration of Equation 1.17 over a given time,

t yields
M; b ,
cr(t) = z—hf/ e UE= B [hgy!
0
v 1— e—i(Ei—E'f)t/ﬁ,
- < Ei — Ef )
E,— E,

where the final step provides easier calculation below.
The square of the amplitude |c,(#)|? = ¢! (t)c,(t) is the probability density that

the system will have had a transition to state n after a time ¢. The rate at which
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this transition will occur is thus given by

(1.20)

To find the total transition rate (the rate at which the system will undergo any
transition), one sums over all the individual rates. Realistic collisions and decays
involve many, largely continuous final energy states separated by an infinitesimal
energy dE; and having a number density given by dN/dE;. The transition rate is

then found by integrating:

+o00o

W= W;dN
T ey (1) AN
= —dF
/_oo t dE; !
_ —4|Mif|2/+°° sin? [(B: — E)t/20]\ dN o)
3 — (B; — Ef)? dEy a '

where substituting = (E; — Ey)t/2h and dov = —dEt/2h yields

2| M; |2 /+°° sinx dN
W=—— —dz. 1.22
o) 2 ) dB; " (1.22)

oo

The phase space factor, dN/dEy is often denoted py. Performing the integration

one finds the total transition rate:
W= 2T Py, (1.23)
where, to reiterate, the matrix element is given by
M;i; = /y;}w,a%. (1.24)
When the first-order perturbation does not hold, Equation 1.23 can still apply,

but the matrix element will not be determined by Equation 1.24, and Equation 1.23

provides the definition of the matrix element.
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1.8.4 The Boson Propagator

A basic overview of interaction cross-sections can be given by applying the
matrix element equation (Equation 1.24) to the simplified description of a central
force from Equation 1.8, which acts on a particle through the exchange of a single
boson of mass m. The single exchange is assumed to make the perturbation and
the transition rate small. The particle in this simple example can be seen as a

basic plane wave, thus the initial wave function is
i, 1) oc e T (1.25)

where the momentum is given by p; = hk;. After the single boson exchange, the
particle will have a final momentum p; = th. Given the simple central force

potential from Equation 1.8:

and applying Equation 1.24 produces

My o /e_iEf'fV(r)eiEi'fd?’x

= 9 lei(Ei—Ef)fe—rmc/hd?,x
A | r
g 1 iq-Z/h ,—rme/h 3

=~ d 1.26
4 Te € T ( )

where r = |Z|, ¢ is the momentum exchange produced by the virtual boson, and g
is, again, a measure of the basic strength of the given force. The integral can be

performed using spherical coordinates (r, 6, ¢) by substituting

7-%=qrcos(d) and d’z=r*sinfdedddr.
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Then

r

o 00 1
_ _g / / eiqru/he—rmc/hr du dr
2 0 —1

o oo igr/h __ ,—iqr/h
g € € _
— e rme/h dr
0

00 7r 27
1 .
My i/ // —elq’"cose/he_’"mc/hTQsinﬁdd)dﬁdr
4T Jo 0o Jo

2 iq/h
B _gh |: er(ig—mc)/h N e—rligtme)/h :| oo
~ 2ig | (ig—me)/h  (ig+mc)/h]|,
_ —g? 2iq
~ 2ig |2~ (me)?]]”
M ! (1.27)
if X S5 .
! q* — (mc)?

where gh? in the last step was absorbed into the proportionality.

Equation 1.27 is known as the boson propagator term, and given its relation-
ship to this simple matrix element, its square will be part of the transition rate
calculation (along with a phase space factor) and it is thus directly related to the
cross-section for the single boson exchange. Note that for a massless boson, the
propagator is simply 1/¢?, and for a massive boson when ¢? is small, the boson
propagator is roughly 1/(mc)?%.

Another interpretation can be had by noting that Equation 1.26 is simply the
Fourier transform of the potential (which is the spatial probability amplitude of
the virtual boson). In general, it converts the probability amplitude in coordinate
space for interacting with a virtual boson at some point in space-time, x, to the

probability amplitude in momentum space for interacting with a virtual boson
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that provides some 4-momentum transfer, ¢>. The boson propagator term is thus
proportional to the force amplitude in momentum space.

In reality, the potential, V', is provided by another particle, and the initial and
final wave functions must thus describe the state of both particles. The above
procedure would then be more complicated and would describe the cross-section
for a scattering event between two particles. However, the boson propagator term
would still come into play, and it provides a basic component for the calculation

of various force interaction cross-sections.

1.8.5 Coupling Constants and Feynman Diagrams

As noted above, the coupling constant for each force is related to the constant
g in the simple central force description. In general, the coupling constant helps
determine the squared amplitude of the force coupling between the real particles
and the virtual bosons that propagate a given force. Note that the simple matrix
element in Equation 1.27 is proportional to g; thus, along with the boson propaga-
tor, these coupling constants are useful in determining the cross-section of a given
interaction, especially when properly implemented in Feynman diagrams.

Feynman diagrams portray particle interactions by displaying the paths of par-
ticles through space and time. Figure 1.2 shows a number of Feynman diagrams
as examples. Space is represented vertically and time flows horizontally. Each
fermion is represented by a line with arrows noting the motion of the particle, and

each boson (photons in these diagrams) is represented by a “squiggly” line. A
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Feynman diagrams for several electromagnetic processes
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line flowing into and then out of a vertex is often referred to as a current. Fig-
ure 1.2(a) shows an electromagnetic interaction between two electrons (scattering).
A single, virtual photon is shown passing between them, transferring an amount of
momentum and energy, p = (E, p) (a four-momentum transfer), between the two.
At each interaction point (or vertex) is noted the coupling constant («) for that
interaction. The cross-section for the complete scattering event is a combination
of all the coupling constants present as well as the momentum transfer (via the
boson propagator term). In this case, the amplitude for each interaction is /«,
and with two interactions and a momentum transfer p?, the overall amplitude is
proportional to \/a\/a/p?. The 1/p? term comes from the boson propagator for a
massless photon. The cross-section is then expressed as do/dp? < o?/p*. Because
the « coupling constant occurs twice, this is called a second-order process.

Figure 1.2(b) shows an example of the photoelectric effect. The electron in the
diagram must initially be bound in an atom for the process to conserve momentum.
The emitted photon is labeled . Here there is only one interaction vertex, and
this is a first-order process with a cross-section proportional to .

Figure 1.2(c) displays a process known as bremsstrahlung (“braking radiation”
in German). An incident electron is accelerated in the presence of a nucleus and ra-
diates away a photon. Note that after the electron radiates and before it exchanges
a virtual photon with the nucleus, momentum and energy cannot be conserved if
the electron retains its true mass. Therefore, in the intermediate, the electron is

said to be in a virtual state in which it is said to go “off mass shell.”
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It is often possible to produce one Feynman diagram from another by replacing
a particle going into (or out of) a vertex by its antiparticle going out off (into)
the vertex (provided conservation laws apply). This is often referred to by noting
that antiparticles are normal particles moving backwards in time. Figure 1.2(d)
is produced from Figure 1.2(c) by replacing an incoming electron by an outgoing
positron. It displays the process of eTe™ pair production.

While Feynman diagrams can be used to implement formal rules for allocat-
ing coupling constants and momentum transfers to calculate cross-sections, they
are often used, as in this text, to simply provide visual representations of force

interactions by the exchange of virtual bosons.

1.8.6 Forces and Particle Decay

The transitions described in Section 1.8.3 via a matrix element,
My = /@/)fV(f)@/Jd?’x,

not only applies to force interaction but also to particle decay. The decay of a
particle from some initial state to some final state can be described via a mediating
force with potential, V. The transition rate for the decay is developed as given in
Section 1.8.3.

Simply stated, one can note the following: In classical relativistic physics, en-
ergy came in three forms: mass energy, energy of motion (kinetic energy), and
energy due to forces (potential energy). In quantum mechanics, the virtual bo-

son mediators of forces can be considered the energy-carriers of the forces. When
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a particle decays into other particles, its mass energy is transformed into other
forms of energy, and in the intermediate state, it can exists as some form of “pure”
energy (i.e., as a virtual boson associated with a particular force). One particle
is transformed into a virtual boson that in turn transforms into other particles.
Thus, any given decay is said to be mediated by a force whose associated boson
forms the intermediate energy state in the decay. In the case of electromagnetic
decay, part of a particle’s decay product can be real photons (the mediator of the
electromagnetic force), which do not decay to other particles.

In a sense, a decay occurs when a virtual boson propagates a momentum trans-
fer through time as the initial state particle couples to the final state particle. The
decay is thus mediated by the associated force and its coupling constant. Such de-
cays are often dominated by so-called resonance structures as the mediating boson
preferentially decays to some unstable, intermediate state particle before further

decay to the stable particles in the final state.

1.8.7 Revisiting the Four Forces

Given the quantum mechanical description of forces, it is now possible to char-
acterize the fundamental forces in terms of the (gauge) bosons that propagate
each of them. The electromagnetic force is mediated by the massless photon
(7), which accounts for its infinite range (and vice-versa). The theory describ-
ing this force is known as quantum electrodynamics (QED). The coupling constant

for an electromagnetic interaction is known as the fine structure constant because
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it was first used when explaining the fine structure splitting mentioned earlier.
It is denoted c, and at small momentum transfer (p> — 0) it has a value of
a = 2 /4reghe = 1/137.0360 (where € is the permittivity of free space from elec-
trodynamics).

The weak nuclear force is mediated by the W= and Z° massive bosons, and
weak interactions can thus produce charge-exchanging events (where the W ex-
change is referred to as a “charged-current” reaction) or neutral interactions (via
7% exchange acting in a “neutral-current” reaction). Because the W* and Z° are
massive (observed and measured in 1983 to be 81 GeV/c? and 94 GeV/c? respec-
tively [26]), the weak force is limited in its range. The weak coupling constant (at
small momentum transfer) is given by the Fermi constant, Gr. Numerically, it is

often given in terms of the proton mass as

A 3
(fic) Gr 11664 x 10 GeV—2. (1.28)

Gr=103x%x10"7° =
r % m2ct (hc)?

However, in describing weak coupling at small momentum transfer, it can be ex-
pressed in terms of the boson propagator, as noted previously, with a weak charge
(g) and the mass of the mediating boson (M, z):

g> (he)?

Gp == .
"7 he M, ,ct

(1.29)

In the late 1960s, Sheldon Glashow, Abdus Salam, and Steven Weinberg pro-
posed a theory that effectively combined the weak and electromagnetic interactions
into one theoretical framework (the electroweak theory) and suggested that the two

forces would have the same coupling at high momentum transfers [27]. Given the
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equations above, it suggested that ¢g* ~ e?/ey. Plugging this into Equation 1.29,
one can predict My z ~ 89 MeV, which is in accordance with the average of
the measured masses of the W+ and Z° given above. See Section 1.13 for more
information about the electroweak theory.

The strong nuclear force is mediated by massless, neutral bosons known as glu-
ons and is described by a theory known as quantum chromodynamics (QCD) [28].
Unlike other mediating bosons, gluons possess the color charge that is associated
with the force it mediates. Each gluon possesses a color-anticolor combination.
With three color charges (labeled red (r), blue (b), and green (g)) and their an-
ticolors (7, b, and §) , one might expect nine combinations; however, the wave
functions describing the combinations r7, ¢g, and bb are not independent, and
these are combined into two “orthogonal” states that are superpositions of the
three combinations. Thus there are eight color-anticolor combinations and eight
associated types of gluons (rb, rg, b, bg, g7, gb, (r7—gg)/\/2, (ri+gg—2bb)//6).*

The color charge of the gluons causes them to have a strong self-interaction.
One can imagine that the color field lines between two quarks (describing the
strong potential between such color-charged particles) are pulled together by the
self-interaction to form a color tube between the quarks. The strong potential then
actually increases as one tries to pull the two quarks apart, and it will eventually
containing more energy than would be required to create two new quarks. Two

new quarks would then be created, each bound to one of the two original quarks,

*This is an SU(3) color octet—a notation described in Section 1.10.
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thus creating two, new, shorter color tubes and reducing the overall energy in the
system. This property of the strong force forbids one from being able to separate
a single quark out of a hadron (a particle made up of two or three quarks). Tt
also accounts for why the strong force is not experienced at macroscopic distances
(because the gluons are confined to within the very short color tubes generated by
their strong self-interaction). The strong coupling constant () at high momentum
transfers (or short distances) is on the order of a; < 1 (though it is large compared
to other coupling constants). However, at small momentum transfers (or large
distances) the coupling constant becomes large (s ~ 1), accounting for the quark
confinement mentioned above.

The gravitational force is the one force not yet fully described by a quantum
field theory. The description of gravity given in general relativity is not fully
consistent with a quantum model. However, it is theorized that gravity may be
mediated by a hypothetical, presumably massless particle called a graviton.

A summary of the forces and their mediators is given in Table 1.1.

1.9 The Standard Model

The concepts discussed above are combined into a mathematically consistent
quantum field theory, the standard model, which attempts to describe all particles
and interactions in the physical universe. In this standard model, all matter in
the universe is composed of two types of (%/2 spin) fermions: leptons and quarks.

There are six leptons and six quarks (or quark flavors, not including different
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“color” charges that the quarks can have), each with an anti-particle counterpart.
These particles are grouped in pairs known as “generations” with three generations
of leptons and three corresponding generations of quarks. In each generation of
lepton is a massive, negatively charged particle (the electron (e), the muon (u),
or the tau (7)) and its neutral, presumably massless neutrino counterpart (v, v,
or v;). Each of the three generations of quarks consist of a quark with a +2/3
charge, the up (u), charm (c), or top (t, sometimes called truth); and a quark with
a —1/3 charge, the down (d), strange (s), or bottom (b, sometimes called beauty).

The anti-particle counterparts of these fermions are denoted by placing a bar over

their name (€, 7., fi, Uy, 7, Ur, U, d, ¢ §, t, b). A summary of the fermions and
their properties is provided in Table 1.2

While the experimental discoveries of the leptons have been mentioned previ-
ously, the existence of quarks (three at the time, u, d, and s) was postulated by
Murray Gell-Mann and George Zweig in 1964 to help explain the vast number of
particle discoveries in terms of a small set of more fundamental constituents [30].
In the late 1960’s experiments at the Stanford Linear Accelerator (SLAC) scat-
tering electrons off protons proved that protons possessed the internal structure
caused by their u and d quark constituents [31].

The quarks are only found in combinations that form other particles, known
collectively as hadrons. They are made up of either a quark-antiquark pair (called
mesons, which have integral spin), or three-quark combinations (called baryons,

which have half-integral spin). Examples of mesons and baryons are given in
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The fundamental fermions (all 1/2 spin) and their properties [29]: M = mass,
() = charge (in multiples of the electron charge, e), 7 = mean life time (not

applicable to quarks, but only to the hadrons they make up).

Leptons Quarks
Name Properties Name Properties
electron | M: < 10eV/c? 1.5 —5 MeV/c?
. up

Hg nel(ltr;no Q: 0 (u) Q: +2/3
S v
F@ ‘ T: stable T —
—
g M: 0.511 MeV/c? M: 3—9MeV/c?
@ electron down

T: stable T: —

muon M: <0.17 MeV/c? M: 1.1-1.4 GeV/c?
— neutrino Q: 0 charm Q: +2/3
g8 (Vu) . © ‘
= 7: stable T -
=
g M: 105.7 MeV/c M: 60— 170 MeV/c
55 muon strange
(u) Q: -1 (s) Q: -1/3
i 22x10 %5 T -
ta M: <182 MeV/c? M: ~170 GeV/c?
. top
= net(1tr3no Q: 0 (1) Q: +2/3
= Vr
S T: stable T: —
=
qz M: 1777 MeV/c? M: 4.1 —4.4 GeV/c?
(a; tau bottom
(7_7) Q: -1 (b) Q: -]_/3
T 29x%x10713 g T —

Table 1.3. The strange quark, for example, was so named because it helped explain

the aforementioned “strangeness” of the K mesons, and the A, 3, and = baryons
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Table 1.3

Hadron examples and their properties. [29]

Meson Examples
Particle C’or?sztﬁzlzms (MAgIa/S/SCZ ) Lifetime
at, ud, di 139.6 2.6 x 1078 s
70 (utt — dd)/v/2 135.0 8.4 x 107" s
K*, K- us, s 493.7 1.3x1078s
K°, R ds, sd 4977 g iz ) 1821;
D*, D~ cd, de 1869.3 1.1x10 25
DY D° cti, uc 1864.6 42 %1071 g
Bt B~ ub, b 5278.9 1.7x107 25
B° B° db, bd 5279.2 1.6x107 25
Baryon Examples
Particle C’ogjfgznts (M]\gIa/s/s(;Z ) Lifetime
pronton uud 938.3 stable
neutron udd 939.6 887 s
A° uds 1115.7 2.6 x 10710 ¢
rt uus 1189.4 8.0x 10715
=0 uss 1314.9 2.9x 10719
Q- Sss 1672.5 82x 107t s

(all of which contain strange quarks). In 1974, the first evidence was found for the

charm quark—an “up-like” companion of the strange quark proposed by GIM as
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noted in Section 1.10.3—by the discovery of the J/1) (a bound state of ¢¢)*. When
the bottom quark was introduced to explain the existence of the Y (a bb meson
discovered in 1977 at Fermi National Laboratory (FNAL) [33]), its was postulated
to also have a heavier companion quark, the top, to round out the picture presented
by the other quark generations. Direct evidence for the top quark was observed in
1994 at FNAL [34].

Thus, through the quark model, the vast number of mesons and baryons that
have been discovered are all described via combinations of only six quark flavors
and their antiquark counterparts.

The fermions interact with one another and decay through the four aforemen-
tioned forces and their mediating bosons, the v, W*, Z° and eight gluons as noted
previously. The allowed interactions and decays depend on a variety of conserva-

tion rules, generally arising from symmetries within the model.

1.10 Symmetries and Conservation Laws

Symmetries play an important role in physics in general and in high energy
physics in particular (in fact it has been said that symmetry is the basis of all
fundamental physics). A system is said to possess a symmetry under a given
operation if after the operation it is left unchanged (i.e. it is invariant under

the operation). Such operations are called symmetry operations for the system. A

*The J/1) was discovered independently by at both Stanford Linear Acceler-
ator (SLAC) and Brookhaven National Labs, thus explaining its two-symboled
name [32].
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physical example of symmetry is found in an equilateral triangle for which a variety
of rotations and reflections leave the triangle looking just as it originally did (see
Appendix D for a discussion of that example). All of the distinctive symmetry
operations of a system can form an group (specifically, a symmetry group). A

group is any set of operators that meet the following conditions:

1. For any two operators (121 and B) in the group, the combinations AB and

BA are also in the group (closure),

2. The operations are all associative such that for any three operators in the

group (A, B, and C) one finds A(BC) = (AB)C,

3. There is an identity operator I in the group such that JA = Al = A for
every operator A in the group, and

4. For each operator A in the group there exists an inverse operator B=A"!

in the group such that A='A = AA~!' =T

If all the operators in a given group commute with one another (i.e., AB = BA
for any two operators A and B in the group), then the group is called an Abelian
group. If for every element one finds AT = A1, then the group is said to be
unitary. The study of groups in general is known as group theory, and is a vital

component of high energy physics.*

*The definition and discussion of symmetry groups can be found in texts such
as Reference [35].
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Naming conventions are given to various groups. An example of a continu-
ous group (one with elements that can be varied over a continuous range) is one
consisting of all rotations and reflections in three dimensions. This is the sym-
metry group for a 3-D sphere, and each element is represented as a 3x3 matrix.
It is known as an orthogonal group because the determinant of each element is
either +1 (for rotations) or —1 (for reflections), and it is named O(3). Considering
only the rotations (elements with determinants equal to +1) produces a special
orthogonal group called SO(3). The SO(3) group governs the physics of angular
momentum. Generalizing this to N dimensions, the SO(N) group is a asymmetry
group of an N dimensional sphere. If one considers a vector in N dimensions posi-
tioned at the origin and with length equal to the radius of an N dimensional unit
sphere, then an operator in the SO(N) group can change the orientation of the vec-
tor, but must leave its length unchanged. Such a vector could also be composed
of complex components, and the full symmetry group that leaves the length of
such a vector unchanged is referred to as the N-dimensional special unitary group,
SU(N) (i.e., it is the symmetry group of a complex N dimensional unit sphere).
In addition, the group of scalar rotations on the complex number plane is called
the one-dimensional unitary group and is denoted U(1). These groups [SU(N) and

U(1)] have vital implications in high energy physics where force interactions that
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are symmetric under a given group imply a variety of characteristics and have
helped predict the existence of particles’ [25, 35].

One of the most important roles of symmetries is in their relationship to con-
servation laws. This is a principle known as Noether’s Theorem, postulated in 1917
by Emmy Noether, which states that for every continuous symmetry of the laws
of physics there must exists a conservation law and vice versa [36]. For example,
one can consider symmetry under spatial transformation. Because the physics of
a system isn’t changed if one moves the coordinate system through space, the
Hamiltonian operator is generally invariant under spatial translation. The trans-
lation operator for an infinitesimal translation, 6Z, would be defined as D such
that Dv(Z) = 1 (Z + 07). This operation can be expanded about # (where one can

ignore higher orders of the infinitesimal 07):

3 ow(z .
D(&) = (T + 67) = (&) + oo gif) - (1 + 67 - v) b(F). (1.30)
Thus
D= (1+55-6). (1.31)
Given the form of the momentum operator noted in Section 1.6 (p = —ihV =
(h/i)V), one can rewrite the D operator as
D= <1 + %&E- f)> . (1.32)

JrSpe(:ifi(:adly, the ° meson and the Q= baryon were predicted because, before
their discovery, there were missing members in representations under an assumed
SU(3) symmetry of the strong force that binds their quarks together.
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Since the Hamiltonian is not affected by translation, D must commute with H,
and from the form of the operator in Equation 1.32, it is obvious that if [D, H] = 0
then [p, H] = 0, implying momentum conservation (from Section 1.6). That is,
the symmetry of physical systems under spatial translation demands conservation
of linear momentum.

Similarly, symmetry under rotation implies conservation of angular momen-
tum and symmetry under time translation implies conservation of energy. In Sec-
tion 1.12, a connection will be drawn between gauge symmetry and conservation

of charge. One finds that, via Noether’s Theorem, symmetry is responsible for the

fundamental conservation laws in physics.

1.10.1 Charge, Energy, and Momentum Conservation

As noted, symmetries involving gauge invariance, invariance under temporal
translations, invariance under spatial translations, and invariance under spatial
rotations each demand that interactions in the standard model all conserve charge,
energy, linear momentum, and angular momentum respectively.

There are important points to note concerning angular momentum conservation
in quantum mechanics. The angular momentum of system of particles will consist
of two contributions: The intrinsic angular momentum of each particle, s;, combine
to form one contribution (generally labeled S = ). +s;), while the particles can
also orbit around one another to form an orbital angular momentum contribution

(labeled L). These angular momentum contributions combine as vectors to form
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the total angular momentum of the system J =S8+ L. Thus the magnitude of J
(|J] = J) will be between limits |S — L| < J < S + L; however, because angular
momentum is quantized, J can only take values between those limits in steps of 1

(J=|S—L|, |S=L|+1, ..., S+1L).

1.10.2 Lepton Number and Baryon Number

In general, fermions can only be created or destroyed in fermion-antifermion
pairs, but for the lepton fermions, a further set of conservation rules apply involving
the generational differences mentioned previously. Certain gauge symmetries imply
that electroweak interactions between the leptons only happen directly between
leptons in the same generation (e.g., a p~ decaying to a neutrino through the
weak force could only decay to a v, + W™=, where the W~ will further decay to
other particles). The conservation law suggested by the symmetry would demand
that lepton interactions only occur in ways that preserve the total number of
leptons minus the number of antileptons in each generation before and after the
interactions. Each lepton is thus assigned a quantum number known as a lepton
number (or identity number) specific to its generation. They are denoted L., L,
and L, for the three generations, and while the leptons are assigned a lepton
number of +1, the antileptons are assigned a corresponding lepton number of -1.

All interactions are then required to conserve the total lepton number for each
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generation. For example, the decay:

woo— e+ Ve + v,
L.= 0 = 41 + -1 + 0,
L,= +1 = 0 + 0 + +1,
is allowed because of the lepton number conservation as indicated, while y —
e + 7, alone would violate lepton number conservation. In that sense, pure cross-
generational changes amongst the leptons (without creation or annihilation of an
associated antilepton) is not permitted by any known process. Searches have yet
to find processes that allow non-conservation of lepton number.

Further, the baryon combinations of the quarks, being three-quark combina-
tions, are also particles of half-integral spin, so they too obey fermion conserva-
tion laws. Each baryon is thus assigned a baryon number (B) of +1 while each
antibaryon is assigned a baryon number of —1, and the total baryon number is
conserved in all interactions. Mesons, on the other hand, having integral spin

(bosons), do not obey such conservation rules.

1.10.3 Quark Generations and the CKM Matrix

Individually, quarks obey fermion conservation rules, and to effect this, each
quark is given a baryon number of 4+1/3 while each antiquark is given a baryon
number of —1/3. This then gives baryons (made of three quarks) their baryon
number of +1 and mesons (made from quark-antiquark combinations) no baryon

number.
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One might further expect that the inter-generational conservation rules of the
leptons would also be held between generations of the quarks; however, such rules
are only found to apply to electromagnetic and strong interactions while weak
interactions allow inter-generational processes with quarks. For example, the weak
decay of a sigma baryon into a neutron and a pion (X~ — n + 7~) involves a
heavy strange quark being transformed into a lighter up quark via a W~ boson
emission (which transforms into the pion): dd(s) — dd(u) + W~ (a change in
“strangeness” of AS = —1). However, such generation-changing decays are found
to be suppressed compared to intra-generational decays (such as the well known
nuclear beta decay: n — p+e~ + 7, = ud(d) — ud(u) + W~). This indicates that
the generational hierarchy does exist for quarks but is not as rigid as the lepton
case. The Cabibbo theory (1963) [37] accounted for this by proposing that the
proper quark states for the down and strange quarks (d' and s’) were a mixing of
their physical states via a “rotation” through a mixing angle called the Cabibbo

angle (0¢):

d coslc sinfq d

_ i (1.33)
S —sinfc- cosfc S
This properly produced a generational hierarchy between the four quarks in the
first two generations: (u d') and (¢ s'). However, at the time the Cabibbo
theory was proposed, the charm quark had not been discovered. In 1970 [38],

S. L. Glashow, J. Tliopoulos and L. Maiani (GIM) proposed the existence of

the charm quark to accompany the s’ in the Cabibbo representation. In 1972,
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Kobayashi and Maskawa [39] generalized this to the six quark case with the ro-
tation matrix (the Cabibbo-Kobayashi-Maskawa (CKM) matrix, V) acting on the

quark states with —1/3 charge:

d Vue Vea Via d
s’ - Vus ‘/;s ‘/ts S ’ (1 ’ 34)
b Vi Voo Vi b

Experimental determination of these matrix elements through the study of various
particle interactions is a major area of interest in high energy physics.

Given the generational conservation under the strong and electromagnetic
forces, quantum numbers (similar to the lepton numbers) are assigned to the
quarks, though, as noted, they are not conserved under the weak force. His-
torically, the up and down quarks were distinguished by assigning them isospin
properties*. The up quark is given a total isospin and isospin z-component
of (I,I;)=(3,+3), while the down quark is assigned an isospin (I,I3)=(5,—3).
For the other quarks, their quantum numbers are associated with their names:
“strangeness” (S), “charmness” (C*, to distinguish it from a charge conjugation
eigenstate, C'), “bottomness” (B*, to distinguish it from baryon number), and
“topness” (T'). Each quark is assigned a value of +1 for its associated quantum

number and zero for the numbers associated with the other quarks as noted in

*Recall from Section 1.7.5 that neutrons and protons were claimed to be two
aspects of one particle, distinguished by their differing isospins. This can be ac-
complished in the quark model by assigning different isospins to their up and down
quark constituents.
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Table 1.4. As with quantum numbers in general, an antiquark’s quantum num-
bers are the negative of its corresponding quark. Hadrons have values for these
quantum numbers found by adding the numbers for their given constituents. As a
result of these assignments, the charge (in terms of the electron charge, as usual)

of any given quark or hadron can be found from the following combination:
1
Q=1Is+(B+5+C"+B" +T), (1.35)

where the part in parentheses is given the term hypercharge and is denoted Y.

Table 1.4

Quantum numbers of the quarks.

Quark B I I; C* S T B Q
u: s 5 43 o 0 0 0 +2
d: T 3 -1 o 0 0 0 -3
c: 5 0 0 +1 0 0 0 +2
s: L0 o o -1 0 0 -—%
t: 0 0 0 0 +1 0 +2
b: s 0 0 o 0 0 -1 -3

Conservation of all these quantum numbers under the strong force helps to pre-
dict a variety of allowed and disallow decays. A summary of the conservation/non-

conservation of these and other quantities is provided in Table 1.5.
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1.10.4 Conservation Under P, C, and T

Conservation under the parity operation (]5), the charge-conjugation operation
(C), and/or the time-reversal operation (T') implies that a system whose wave
function is even (odd) under a given operation before some interaction or decay
is still even (odd) afterwards. Such interactions are said to be P, C', and/or T
invariant. An interaction that is not invariant under a given conjugation operation
implies that the conjugated form of the interaction is either non-physical or occurs
with a different probability than the original form. In electromagnetic and strong
interactions, processes are found to be invariant under each of these operations.
However, weak interactions are essentially found to allow violation of all three.

Until the 1950s, it had generally been assumed that mirror-reflection should
not alter any physical process. An experiment to illustrate parity violation in
weak decays was first proposed in 1956 by T. D. Lee and C. N. Yang [40] and was
carried out in an experiment directed by C. S. Wu [41]. In it, beta-decay (decays
emitting electrons) of a radioactive cobalt-60 (°C') atom found it tended to emit
the electrons preferentially in the direction opposite to the spin of the cobalt atom.
The mirror reflection of the decay changed the spin, but not the direction of the
emitted electrons, though the complete parity operation changes the direction of
the electrons but not the spin direction. In either case, the result is a process that
exhibits directional properties not found in nature.

An obvious source of parity- and charge-conjugation-violation in weak [-decay

is found in neutrinos and antineutrinos (which are emitted as part of the de-
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cay). Neutrinos, being without charge or color, only interact via the weak force.
Neutrinos (antineutrinos) also possess a unique, intrinsic handedness in that their
direction of spin is always found to be opposite (the same as) their direction of
motion. A measure of this property is found in helicity: given a particle’s spin
direction as ¢ and its direction of motion (from its momentum) as p, its helicity
is given by H = 6 - p. Neutrinos are found to always have negative helicity (left-
handed) and antineutrinos have H = +1 (right-handed) [25].* While parity causes
the neutrino direction to reverse, the spin direction is an axial vector, and thus
does not change under parity. Therefore helicity is odd under the parity operation,
and the operation changes a left-handed neutrino (or right-handed antineutrino)
into a right-handed neutrino (or left-handed anti-neutrino), which does not exist
in nature. Thus, applying parity to an interaction involving neutrinos produces
a non-physical system. Similarly, applying charge conjugation (which exchanges
particle for antiparticle) to such an interaction changes a neutrino into an an-
tineutrino (and vice-versa) without switching the helicity, thus again producing
wrongly-handed neutrinos and anti-neutrinos. Weak interactions therefore allow
violations of both P and C, and though this was demonstrated using neutrinos, it
is a general property of the weak force.

Note that in the above examples, the combination of P then C' (or vise-versa)

reproduces an allowed interaction with neutrinos. The parity operation changes

*If neutrinos are truly always left-handed, then they must travel at the speed
of light (or one could boost into a frame in which their direction changes but spin
does not). This attests to their (nearly) zero mass.
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the direction but not the helicity, but charge-conjugation changes the particle to
its antiparticle counterpart, thus making the helicity correct again. It is found
in general that weak interactions are highly symmetric under the combination of
C P; however, in 1964, weak decays were discovered (involving the K° meson) that
violated C'P [42]. Two states of the K°, named after their comparative life-times,
are the K-short (K2) and K-long (K?). The K2 is a superposition consisting
primarily of a CP = +1 amplitude with only a small amount of CP = —1 (and
vice-versa for K?). Under C'P, the two should exchange identities completely, and
any decay of one should thus occur with the same probability as the same decay of
the other; however, it is found that, for example, in the decay of K? — 77 + 7,
the amplitude for K? is slightly larger, thus violating CP invariance. If CP were
not violated, one would also expect the same amplitudes for K — 7= + et + v,
and K? — 7% + e~ + 1,; however this symmetry is also found to be violated to a
small degree. Explanations of this C'P violation in weak decays have been a focus
of various theoretical works since it was discovered.*

While violations of P, C, and C'P have been found in weak interactions, it is be-
lieved that all interactions should be symmetric under the combination CPT [25].
This CPT theorem can be deduced from very basic properties of relativistic quan-
tum field theory. C'PT invariance is what demands that particles and antiparticles

have the same masses and lifetimes, and it requires integral spin and half-integral

*C P violation is a basic requirement of theories attempting to explain how a
universe assumed to start with equal matter and anti-matter could become domi-
nated by matter. Thus C'P violation as been an intensive field of study.



63

spin particles to obey Bose-Einstein and Fermi-Dirac statistics respectively. Thus,
since weak decays allow violation of C'P, then they should also allow violation of

T in order for CPT to hold.

1.10.5 A Summary of Conserved Quantities

Table 1.5 is provided below to summarize the conserved quantities under each of
the three forces that are well described by quantum field theories. In some instances
where quantities are not conserved (specifically, for certain weak interactions) the
table indicates the changes believed to be allowed in the quantum number where

applicable [25].

1.11 Renormalization

The predictive power of the standard model depends on its ability to calcu-
late such things as cross-sections and transition rates given its descriptions of the
fundamental forces and their coupling constants. However, a problem arose (first
noted in the application of QED) as attempts were made to calculate such quan-
tities for realistic interactions. The problem can be illustrated using Feynman’s
“sum over histories” concept. Consider two electrons interacting via a virtual pho-
ton exchange (a QED process). To correctly predict the cross-section of such an
event, one must include various corrections due to possible transitions that the
photon can undergo. For example, the photon could split into a virtual electron-
antielectron pair, which could then recombine into the virtual photon; or the same

thing could happen but with the pair exchanging another virtual photon before
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Summary of conservation rules.

Interaction (Yes = Quantity is Conserved)
Quantity Considered Strong IE;ZCJ;E{C Weak
Energy/Momentum: Yes Yes Yes
Charge: Yes Yes Yes
Color: Yes Yes Yes
Weak Isospin: Yes Yes Yes
L; (lepton number): Yes Yes Yes
B (baryon number): Yes Yes Yes
S (strangeness): Yes Yes no (AS =0,1)
C* (charmness): Yes Yes no (AS =0,1)
B* (bottomness): Yes Yes no (AB* =0,1)
T (topness): Yes Yes no (AT =0,1)
I (isospin): Yes no no (Al =1or 3)
Is: Yes Yes no
G (G-parity) Yes no no
P (parity) Yes Yes no
C (charge conjugation): Yes Yes no
CP (or T): Yes Yes no (rare violations)
CPT : Yes Yes Yes

they recombine; etc.

(see Figure 1.3 for Feynman diagrams of these examples).

Even the basic problem of a free electron moving between two points in space-time

includes corrections due to the self-interaction of the electron—it can emit and
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re-absorb virtual photons, which too can split into particle-antiparticle pairs that
rejoin, etc. (see Figure 1.4 for Feynman diagrams of these examples). Any one of
these corrective transitions can occur in a number of ways (with different emission
and absorption points, for example), and as one considers possibilities with more
and more transitions, the corrections include more and more vertices and thus

involve higher and higher orders of the coupling constant.

Figure 1.3

Feynman diagrams showing internal “corrective” processes for a scattering event.

These corrections effectively alter the measured coupling between the electrons
(thus effecting the actual, measured charge, e) and surround the electron with a
“cloud” of virtual particles (thus effecting its actual, measured mass). Without

these corrections, the electron would act like an “ideal” particle with some “bare”
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Figure 1.4

Feynman diagrams showing internal “corrective” processes via self-interaction.

mass m/, and charge €', which should then be used to properly compute these
various corrective factors in all physical processes.

However, calculating such corrections must include possibilities where absorp-
tion and emission in the corrective effects are infinitesimally close; therefore, the
calculation for any such correction will involve integrals over all possible momen-
tum transfers up to infinity. The integrals (containing factors on the order of
dk/k, which come from the momentum propagator term) are logarithmically di-
vergent, and the calculated corrections become infinite for all amplitude computa-
tions [24,25].

To overcome this problem in QED, a process known as renormalization was
used in which all the divergences were absorbed into the bare mass and charge of
the electron (arbitrary and unmeasurable quantities) so as to produce the actual,
measured mass and charge of the electron. The process was developed in the 1940s
by Richard P. Feynman, Julian Schwinger, and Sin-Itiro Tomonaga, who shared the

1965 Nobel Prize in physics for their contributions [23]. Renormalization allowed



67

the calculated correction factors in any event and at all orders in the coupling
constant to be finite, and provided QED with computable predictive power.* A
theory is thus said to be renormalizable if a finite number of parameters (which
must be measured experimentally) are used to absorb all divergences at all orders
in the coupling constant such that the amplitudes of physical processes become
finite calculations.

One of the most elegant applications of QED’s predictive power (made possible
by renormalization) is in the calculation of radiative corrections to the magnetic
moment of the electron (which affects its interactions with magnetic fields). For an
ideal, point-like electron, its magnetic moment and its spin vector are related by a
constant (the Landé g-factor) of ¢ = 2. However, highly precise measurements of
this factor have proved that it is not 2 by some small amount (< 0.2%). The QED
corrections provide a prediction of the actual g factor by including many corrective
terms (each involving successively higher orders in «). A diagram of the basic
process and three corrective terms is given in Figure 1.5. The correction involves
a power series in «, and calculation of the coefficients for each term was made
possible via renormalization. A comparison between highly precise measurement

of the g factor for an electron (made in 1987) and a recent calculation using QED

*Feynman himself (a co-developer of renormalization) always considered it to be
something of mathematical hocus-pocus, though the predictive power it provided
has proven remarkable.
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~ from magnet ~ from magnet ~ from magnet ~ from magnet

A A A

Figure 1.5

Feynman diagrams showing some radiative corrections to the electron’s magnetic
moment.

is given here [43,44]:

g. measured: (1159652188.4 + 4.3) x 107'° % different from 2,

ge predicted: (1159652205.4 4 27.1) x 107'° % different from 2.

This is one of the the most precise experiments in physics, and it is said there is
no better agreement between theory and experiment in all of science.
Renormalization generally arises in theories with a high degree of symmetry.
However, when massive bosons are included (such as those in weak interactions),
the terms in the calculations that diverge (originating in the boson propagator
term) turn out to only be absorbed by introducing an indefinitely large number
of arbitrary constants. Thus such theories are, in general, not renormalizable, and
they tend to loose all predictive power. This seemed to spell trouble for a useful

quantum field theory of weak interactions.
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1.12  Gauge Invariance

Perhaps the most fundamental principle embodied in the field theories gov-
erning forces in the standard model is that of gauge invariance. Global gauge
invariance implies that a system involving a given force is symmetric under some
operation that is applied equally throughout space to the field governing the force.
Such symmetry implies conservation laws (as noted above). For example, calcula-
tions in electrostatics depend only on the change in an electric potential field from
one point in space to another, and no physical process can depend on the actual
value of the field at just one point. This global gauge invariance dictates charge
conservation. To demonstrate this, assume it were possible to create a charge, ()
within a potential field, allow the force from the field to move the charge to another
location, and then destroy it. Let the potential at the initial and final locations
(on some chosen scale) be ¢; and ¢;. Further, let the work done in creating and
destroying the charge be W; and W;. Given global gauge invariance, the work
done at the two different locations in the potential field cannot depend on the
actual values of ¢; and ¢y, therefore W; = Wy; however, as the charge moved in
the field, its potential energy is changed by Q(¢f — ¢;). The overall change in
energy is then AE = W; —W; 4+ Q(¢; — ¢;) = Q(¢5 — ¢;). Thus, because of global
gauge invariance, non-conservation of electric charge would imply non-conservation
of energy—global gauge invariance implies charge conservation. (Mathematically,
one could require global gauge invariance for the wave equation (or equation of

motion) governing a charged particle in a potential field. The results would show
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that the divergence of the four-dimensional current density is zero, which implies
charge conservation.)

Gauge invariance can be investigated by considering a charged particle whose
wave function is denoted 1(x) (where x is in four dimensional space-time). The

Lagrangian of such a particle will, in general, include terms similar to the follow-

*

ing*:
P (%)0,9(x), (1.36)
where
i) = 2 (1.37)

is the gradient of v (x) in four dimensions (¢ € (0,1,2,3) = (¢t,x,y, z), see Ap-
pendix B).
Global gauge invariance requires that a phase rotation in the wave function

must leave the equation of motion unchanged. Such a rotation is given by
Y(x) — eP(x)  (such that ¥f(x) — e Yf(x)), (1.38)
and terms in the Lagrangian involving the gradient thus become
WH006(x) = e (1), ((Y(0) = P (0Ib).  (139)

Such terms are thus left unchanged under a phase rotation specifically because «

is a constant in x (9,e'* = 0), and thus global gauge invariance is obviously held.

*One could also consider the Klein-Gordon equation that is derived from such
a Lagrangian, and which includes terms involving (9/9x%)%, but looking at the
gradient terms in the Lagrangian will suffice and allows for easier math.
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However, a much more powerful requirement is that of local gauge invariance.
That is, if the phase rotation is dependent on the particular position in space-time,
then o — «(x) such that

P(x) = e®y(x). (1.40)
Terms involving the gradient then become

PH(x)Ip(x) — e e™ypt(x)d, (e*™y(x))
= e MIPT(x)e 09 9, (x) + it (x)Dar(x)]
(1.41)
= I (x)0u(x) + " (x)¥(x) 9 (x)
7 1(x)0,9(x).

Thus, an equation of motion derived from a Lagrangian containing such a
gradient term is not invariant under local gauge transformations; however, what
if one forces local gauge invariance?” To do so, one requires a different type of
derivative (D,) such that D, (e?*®)y)(x)) = e ™D, ¢(x). To construct such a

derivative requires the introduction of a new vector term, A,(x), in a way that

will cancel out the unwanted terms in the previous equation. Thus one defines
D, =0, —iA,, (1.42)
where A, transforms under a gauge transformation as follows:

A,(x) = A,(x) + 0,0(x). (1.43)
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Then terms involving the new derivative transform as

YIx)Dup(x) — e Yl (x) Dy, (e*(x))
= e Myl(x) [0, —iA, —id,a(x)] (em(x)w(x))
= e eMIyt(x)elr®)
(1.44)
x [(10,a(x) + 0,) — 1A, — i0ua(z)] (%)

= Y1(x) [0 — i) ¥(x)

= YI(x)Dy¢p(x),
and equations of motion derived from a Lagrangian that contains such derivative
terms are invariant under local gauge transformations. However, such an equation
is precisely the form of the electromagnetic field mediated by a massless boson
(the photon) described by the vector field A, (associated with the classical elec-
tromagnetic vector potential). Thus, requiring local gauge invariance under phase
transformations demands the existence of the photon and all the laws governing
quantum electrodynamics.

Put forth in a more general way, demanding local gauge symmetry in a system
requires a mediating field to be added (such as A,) whose response to any local
operation on the field is to directly compensate for the variations in symmetry
that would otherwise occur from point-to-point. The field thus propagates local
symmetry throughout the system and provides an interaction mechanism. Such
a field is called a gauge field, and the quanta that mediate it are called gauge

quanta. Because the extent to which the variations can occur through space-time

is unlimited, the effects of the gauge field must have infinite range, and thus such
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gauge invariant systems require massless quanta. Further, gauge invariant theories
impose constraints that cause them to contain a high degree of symmetry, and as
a result they are always renormalizable.

A theory possessing local gauge-invariance thus defines a system of interaction
(i.e., a force-carrying field). The gauge field provides the interaction medium,
and the specific framework of the interaction (the format of the specific force) is
determined by the type of symmetry being demanded. For example, the above
set of infinite local phase transformations via the scalar o produces the complete
description of the electromagnetic force. Those transformations form an Abelian,
unitary symmetry group, U(1). In a similar way, color symmetry under the group
SU(3) is a gauge invariance that implies the existence of the gluon and the laws
governing quantum chromodynamics. It was hoped that such a gauge invariance
application could also imply the weak field and its gauge bosons. However, since
gauge invariance always implies massless bosons, the massive propagators of the
weak field tend to defy gauge invariance (as well as the ability to renormalize).

In 1954, C. N. Yang and R. Mills suggested gauge invariance under the group
SU(2) in isospin space [45]. Local invariance under isospin rotation can be imposed
(similarly to how local gauge invariance was imposed in electrodynamics above) by
adding a component to the derivative involving an isovector field with components
in isospin space denoted W,Sl), WLEZ), and W,S?’). This implies a force mediated by
both charged and neutral massless bosons; however, no charged, massless bosons

are found to exist. Further, if one wishes to consider this as a description of the
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weak force, a problem arises in that isospin conservation can be violated in weak

interactions, implying that isospin symmetry cannot be strictly required.
Overcoming the problems of applying gauge invariance and renormalization to

the weak force has been a major triumph for the standard model, and it is briefly

explored in the next section.

1.13 Development of the Electroweak Theory

In the late 1960s [25,46], Glashow, Salam, and Weinberg proposed a gauge
theory based on an SU(2) group in “weak isospin” (Z) and a U(1) group in “weak
hypercharge” (defined here as Y = 2(Q) —Z3), where @ is the electric charge and Z3
is the third component of weak isospin). The model possesses an underlying gauge
symmetry and suggests massless boson fields consisting of a weak isospin triplet
of vector particles (W;Sl), ;52), and WLEZ)), an isospin singlet vector particle (B,),
and an isospin doublet of scalar particles (¢ and ¢°, known as Higgs scalars). Via
self-interaction, the Higgs scalars generate mass in a process called spontaneous
symmetry breaking (invoked by Glashow, Salam, and Weinberg).* This breaking
of the underlying local symmetry remarkably leaves the renormalizability of the
theory intact and further allows the physical quanta to acquire mass. The Higgs
scalars (complex fields) have a total of four real components: ¢+, ¢* = ¢, (¢° —
¢°)/V/2, and (¢°+¢°)/v/2. The former three are “eaten” by the W fields, providing

them with mass (and leaving one physical Higgs scalar in the basic model, for which

*For a simple but instructive example of spontaneous symmetry breaking, see
Appendix E.
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physicist are currently searching). The physical bosons resulting from the model
are then found to be combinations of the W,Si) and B, fields: The W+ and W~—
massive, charged propagators of the weak force arise from combinations of W‘Sl)
and WLEZ), while mixing of the W‘S?’) and B, fields give rise to a neutral, massive
field (the Z° propagator of the weak force) and a neutral, massless field (the photon
propagator of the electromagnetic force).

Thus, the Glashow, Salam, and Weinberg model invoked spontaneous symme-
try breaking to make the v, W*, and Z° bosons originate from a group of four
massless vector particles and two massless Higgs scalars. The theory, known as the
electroweak theory, effectively combined the weak and electromagnetic interactions
into one theoretical framework and suggested that the two forces would have the
same coupling at high momentum transfers. As noted in Section 1.8.7, this helped
to predict the masses of the W* and Z° bosons..

The use of gauge invariance in numerous ways has thus lead to consistent
field theories describing the electromagnetic force (QED), the strong nuclear force
(QCD), and the weak force (electroweak theory). The success of the combination
of electrodynamics and the weak force into one unified theory has started physicists
down a path of trying to combine all the forces under one theoretical framework,
the so-called “grand unified theory.” Obviously the power of gauge invariance is

vital in the standard model.
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1.14 Modern Study of High Energy Physics

The standard model provides a satisfactory description of many phenomena
in high energy physics; however, not only does it leave much to be determined
by experimentation (e.g., various particle masses, the coupling constants of the
forces, mixing angles, etc.), but it also leaves a variety of questions unanswered
and many possibilities exist for physics beyond the standard model. Modern study
of high energy physics explores the questions and unknowns in the standard model,
searches for experimental outcomes that the standard model does not account for,
and develops theories within and beyond the framework of the standard model
in an attempt to unify various parts of the model and predict a wide range of
phenomena.

Some of the many research topics explored in modern high energy physics
include the following: the investigation of non-zero neutrino masses, the search
for lepton number non-conservation, the search for the Higgs and the predic-
tion/measurement of its mass, precise measurement of the CKM matrix elements,
the study of and search for C' P violation, the search for rare decays and their decay
rates, the study of cosmology and cosmic-scale structures via high energy physics
phenomena, etc. Some specific theoretical work in high energy physics includes
formulation of a grand unified theory (attempts to unite the four forces under one
framework), super symmetry (which attempts to relate fermions and bosons under

one framework), and quantum gravity.
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In these studies in general, and for this dissertation in specific, particle decay
mechanisms are an important realm of investigation since they are controlled by
the fundamental forces. The decay rate and manner in which a specific decay
occurs is determined by how the fundamental force mediating the decay behaves.
Models are often proposed to describe the specific resonance structure within a
decay, but the relative importance of the resonances and tests of their modeling
require experimental determination.

Experimentation provides the ultimate tests of the models in high energy
physics and often furnishes the impetus for future theoretical development. In
order to perform experiments in high energy physics, one requires the ability to
detect and direct fundamental particles in a variety of ways, as discussed in the

following section.

1.15 Particle Manipulation and Detection

The study of high energy physics requires the manipulation and detection of
various fundamental particles. Charged particles can be manipulated by the use of
electromagnetic fields, which are readily controlled with current technology. While
one can find ways to generate neutral particles along some given path, controlled
manipulation of such particles would require precise command over the gravita-
tional, weak, and/or strong force (depending on the particle type), none of which is
possible with current knowledge and technology. Detection of fundamental parti-

cles can be achieved for both charged and neutral particles given their interactions



78

with various materials. The following sections overview general principles and
equipment used for charged particle manipulation and for various types of particle

detection.

1.15.1 Accelerating and Directing Charged Particles
Charged particles can be accelerated by the proper use of electric fields*. One

device used for such acceleration is illustrated in Figure 1.6. It displays a linear

- + - + -

Proton source

Figure 1.6

A diagram depicting a simple proton linear accelerator. Alternating potentials on
the tube segments propel the proton, and successively longer segments are needed
so the proton traverses each segment in the same length of time while it is also
being accelerated.

accelerator consisting of tubular sections attached to a radio frequency (RF) alter-
nating voltage source. In practice, the sections would all be within one evacuated
tube. As the voltage changes, alternating sections of the accelerator are charged

positively and negatively. Given the right alternating frequency and successively

*Information concerning general aspects of particle manipulation can be found
in a variety of textbooks including [25].
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longer tubes along the length, a proton' injected into the accelerator at the right
time can be attracted into each successive section while being ejected from the pre-
vious such that somewhat continuous acceleration is provided through the length
of the apparatus. The increasing lengths of each tube section should ensure that
though the proton is accelerating, it spends the same amount of time in each sec-
tion (thus allowing the accelerator to operate with a constant frequency voltage
source).

Because of their small mass, the velocity of an electron with energy above a
few MeV (in the laboratory frame of reference) is nominally close to the speed of
light (in that frame). Force applied to such an electron can increase its energy
but can only increase its velocity by an insignificant amount. Thus, in the above
accelerator, successive tube lengths would become uniform. In practice, a series
of radio frequency (RF) cavities is used to provide acceleration for high energy
electrons.

An RF cavity is a specially designed chamber in which a microwave frequency
electric field resonates back and forth. In the center of the cavity the field is
strongest and an opening on either side allows particles to pass into and out of the
cavity, thus experiencing a force from the electric field. A diagram of an RF cavity
is shown in Figure 1.7. Whether a particle feels a force against its motion or with

its motion as it enters an RF cavity depends on the direction of the field at that

TProtons can be collected by stripping an electron off of a hydrogen atom (i.e.
they are hydrogen ions).
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Figure 1.7

A generic RF cavity geometry showing electric and magnetic field lines. The peak
of the oscillating electric field is strongest through the central axis of the cavity
while the magnetic field is constrained towards the equatorial region of the cavity.

moment; thus the distance between cavities and the timing of the oscillating field
in each must be properly synchronized so as push the electrons forward as they
pass through each cavity. The electrons essentially ride on the wave crest of the
electric field in each cavity as they are propelled down the beam pipe.

To keep charged particles along a desired path, magnetic fields can be used to
manipulate their motion. Though magnetic fields do no work (they do not provide
force in or against the direction of motion), they do provide a force perpendicular
to the motion of a charged particle as it crosses the magnetic field lines. A dipole
magnet is an electromagnet designed to have opposing poles pointing toward one
another with a gap between them. The field lines pass straight from one pole to

the next providing a somewhat uniform magnetic field between them. A particle
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Figure 1.8

Cross-sectional diagrams of a dipole bending magnet (a) and a quadrupole focusing
magnet (b). Thin arrows indicate the magnetic field lines while thick arrows show
the force direction on a positive charge moving “into” the page.

moving between the poles and perpendicular to the field lines will be forced to
veer “left” or “right” (perpendicular to the field lines) depending on its charge.
Figure 1.8(a) displays a diagram of such a bending magnet showing the direction
of force a positive particle would feel as it entered the field. The amount of bending
will depend only on the strength of the magnet, the charge of the particle, and
its momentum. Thus with proper positioning of bending magnets, one can direct
moving charged particles as desired.

One generally wishes to keep particle bunches highly concentrated, which re-
quires focusing of particle beams. Properly designed electromagnets with more
than two inwardly facing poles (quadrupole, sextupole, etc.) produce field lines

that provide a “focusing” force in the center of the magnet. An example of a
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quadrupole magnet is shown in Figure 1.8(b) and shows that a positive charge
entering the magnet would experiencing a stable force pushing it inwards along
one axis perpendicular to its motion while experiencing opposing forces outwardly
along the other axis. By using a series of such magnets, each turned 90° from
the previous one, a beam of charged particles passing through them would become
focused in both directions.

Thus, by using electromagnetic fields in a variety of configurations, charged

particles can be manipulated as needed to perform desired experiments.

1.15.2 Particle Detectors

As charged particles pass through a medium they will interact electromagneti-
cally with the atoms in the medium, thus directly or indirectly transferring energy
to the atoms. In general, the energy transfer will either excite the atoms, which will
then de-excite and emit photons, or it will strip away electrons, turning the atoms
into electrically charged ions. Various devices utilize and measure these effects to
provide charged particle detection and tracking. Some devices also allow detection
of certain neutral particles such as high energy photons. Brief descriptions for

several detection devices are given here.*

Cloud Chambers: Under the right conditions, when a charged particle passing
through a medium generates ions, the presence of the ions can produce visible

effects in the surrounding medium. A cloud chamber (first conceived of and

*Greater details concerning such particle detectors can be found in various
references including [25,47].
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used in the early part of the 20th century) generally contains gas saturated
with water vapor. Charged particles passing through the chamber will leave
a trail of ions, and under the right conditions the vapor will condense into
a cloud of tiny water droplets along the ionization trail, thus producing a

visible track where the particle had passed.

Bubble Chambers: Bubble chambers (invented in 1952 by Donald Glaser) are filled
with superheated liquid in which an ion trail can form. When pressure on the
liquid is released, boiling can occur, and tiny bubbles appear preferentially
along any ionization trails in the chamber. As with cloud chambers, visible
tracks form where charged particles have recently passed. The tracks can
then be photographed and analyzed. Though bubble chambers have been an
indispensable tool for high energy physics, they have major limitations: they
are unable to quickly record a series of successive events, and analysis of the

resulting films is very time consuming.

Spark Chambers: A spark chamber consists of a series of stacked plates (or a wire
grid) separated by spaces where alternate plates are oppositely charged at
high voltage. The surrounding chamber (including the gaps between the
plates) is filled with gas in which ions form when a charged particle passes
through. The electrons left along the trail are propelled by the high voltage,
and the resulting spark passes through the chamber, indicating the path of

the charged particle.
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Proportional Counters: A single proportional counter consists of a gas filled hol-
low tube whose outer surface is maintained at a negative electric potential
(thus acting as a cathode). Through the center of the tube is a fine wire
kept at a positive potential (an anode). A charge particle passing through
the tube leaves ions and liberated electrons in the gas. The electrons (with
little mass) drift readily toward the positive “sense” wire, gaining energy
and potentially liberating more electrons from the gas as they travel. Those
secondary electrons will also drift and potentially liberate even more elec-
trons, thus producing an “avalanche” effect. As electrons reach the anode
wire they generate an electrical pulse that can be read out by electronics
attached to the wire. Thus, a series of proportional counters can be used to
track particles as they pass through each one, and the data can be quickly
stored electronically for later analysis. The number of secondary electrons
reaching the wire is generally directly proportional to the number of initial

ions produced, thus the name “proportional counters.”

Multi-wire Proportional Counters: A useful extension of proportional counters is
a multi-wire version introduced in the late 1960s by G. Charpak. It utilizes
a series of anode wires strung in a plane between two cathode plates such
that each wire acts as an independent detector. In practice the cathode

plates are often made of strips running perpendicular to the anode wires.
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The electromagnetic effects of the avalanche cause pulses on the the cathode

strips as well, and further spatial information can be gained.

Drift Chambers: Drift chambers are designed to obtain the benefits of a multi-
wire proportional counter over large tracking areas. They generally consist
of many sense wires, each surrounded by an arrangement of field shaping
wires to produce cells. The field wires are arranged and maintained at proper
potentials so as to provide a uniform drift field for the liberated electrons.
The electrons drift through this field until reaching a sense wire where an
electric pulse is created and measured. By noting drift times and the series
of wires that receive pluses, a reasonably high resolution measurement of a

charged particle’s path through the chamber can be obtained.

Scintillation Counters: When particles pass through certain media they can cause
excitation of the atoms, which then emit light (luminescence) in a process
called scintillation. This can occur in different ways for different scintillating
media. The process is generally vary rapid, making scintillation counters use-
ful for taking many consecutive measurements of extremely frequent events.
The light produced in such a device can be recorded by various light-sensitive
devices such as photomultiplier tubes and photodiodes. In a photomultiplier,
light strikes a metal coated cathode, liberating electrons via the photoelec-
tric effect. The electrons are attracted to and strike a positively charged

“dinode” where they liberate more electrons that are in turn attracted to
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more dinodes, each with a successively larger potential. Through this ampli-
fication process a sizable electric pulse is produced. Photodiodes sense light
using a solid-state effect by which light at a given frequency can create a
current in the diode. Light produced in a scintillator can travel through it
via internal reflection, and if needed it can be piped with a clear light guide

to the detection device.

Cerenkov Counters: Though particles do not travel faster than the speed of light
in a vacuum, in a translucent material light transmission is slowed as the
light interacts with the medium. It is therefore possible for a highly ener-
getic particle to traverse certain dielectric media faster than light is trans-
mitted through the media. This creates a coherent wave-front of light (called
Cerenkov radiation after its discoverer) in a fashion similar to the creation
of a sonic boom when an object travels faster than sound through air. The
angle the wave-front makes with respect to the direction of the particle is
given by cosf = 1/(n), where n is the index of refraction for the medium
and the particle’s velocity is given in terms of 3 = v/c. Thus, with a prop-
erly selected medium, high-speed particles can be detected by the Cerenkov
radiation they produce; and even more useful, a measure of the wavefront

angle provides a direct measurement of the particle’s speed.

Shower Calorimeters: Calorimeters measure particles utilizing a total absorption

method where nearly all of the particle’s energy is absorbed in the detec-
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tor (and they are thus composed of relatively dense, solid material). They
provide for detection of charged particles as well as energetic photons and
neutral hadrons. For example, an electron decelerated by electromagnetic
interactions in a calorimeter releases photon radiation via bremsstrahlung
(or an energetic photon can enter the calorimeter to start the process). In
either case, the photon can interact with the material to produce an electron-
antielectron pair, and they are caused to radiate more photons, quickly result-
ing in a shower of particles and radiation. Once the process produces photons
without enough energy to generate more pairs, the cascade abruptly stops.
The total energy of the photons that are finally emitted can be measured
and will be proportional to the initial particle energy that was absorbed.
Calorimeters can also be produced to detect hadrons through a similar pro-
cess involving nuclear interactions. Calorimeters are thus useful for detecting
and measuring the energy of particles that need not exit the device. They
also have fast reaction times, making them useful when energy information

needs to be used in make quick electronic decisions (e.g., for event selection).

Neutrino Detectors: While study of neutrinos is of relatively strong interest, the
fact that they have little or no mass and only interact via the weak force
makes them very hard to detect. They can very readily pass through vast
amounts of material (such as the entire Earth) without being affected. Of

particular interest is solar neutrinos because the rate at which they are de-
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tected is lower than current theory can account for.* Neutrino study is
generally undertaken by large, specialized experiments designed just for that
purpose. For example, the largest underground neutrino detector to date (the
Super-Kamiokande in Japan) is comprised of a vast tank filled with 50,000
tons of water buried thousands of meters underground (to shield it from un-
wanted interactions). Neutrinos can interact weakly with the electrons in the
water and propel them to high speeds so as to produce Cerenkov radiation.
The radiation can then be detected by the roughly 13,000 photomultiplier

tubes that line the interior of the tank.

Large Hybrid Detectors: General purpose experiments in high energy physics re-
quire a variety of measurements on many different types of particles produced
by the interactions they generate. Such facilities therefore utilize an assort-
ment of detectors arranged into one hybrid detector array. Such an array was

used to gather the data presented in this dissertation, as discussed below.

*Neutrinos are generated copiously by interactions within stars and pass
through the stars and into space. The Earth is bombarded by on the order of
one trillion neutrinos every second from the sun.
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2. THE CESR AND CLEO IT EXPERIMENTS

The data used for the analysis presented herein was taken at the Cornell Elec-
tron Storage Ring (CESR) using the CLEO II detector. These facilities are located
at Cornell University in I[thaca, New York, and the data was taken between Novem-
ber 1990 and April 1995. Details concerning the data selection are presented in

Chapter 4, while the experiments used to collect the data are described here.

2.1 The Cornell Electron Storage Ring

The Cornell Electron Storage Ring (CESR, pronounced “Caesar”) is a circular
electron-positron collider with a circumference of 768 meters (roughly half a mile
in circumference or 400 feet in diameter) [48]. It was constructed in the mid-
1960s (though it began colliding beam experiments in 1979) and it is located
about 12 meters under ground below an athletic field and a parking lot on Cornell
University campus. Through a process described below, electrons and positrons
(antielectrons) are accelerated and injected into the ring with electrons traveling
counter-clockwise and positrons traveling clockwise. The beams are held in the
storage ring, and with each pass around the ring they are brought into collision at
a specific interaction region around which the CLEO II detector is centered. The

by-products of the resulting electron-positron annihilations can then be analyzed.
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Figure 2.1
Diagram of the Cornell Electron Storage Ring (CESR)

CESR is suited for producing collisions with a center-of-mass energy range from
9.4 to 12.0 GeV, thus it operates in the range of the Y(45) resonance—an excited
bb meson state with a peak mass of 10.58 GeV (just above the threshold to produce
BB meson pairs). This makes CESR, uniquely suited for production and study of
the b and ¢ heavy quarks as well as 7-pair events, providing a wide variety of
research topics.

The electrons and positrons are created and manipulated using electromagnetic

fields controlled in various components of CESR. The major components of CESR
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are the linear accelerator, the synchrotron, and the storage ring (see Figure 2.1 for

a schematic of CESR).

2.1.1 The Linear Accelerator

The linear accelerator (or linac) is used to generate and initially accelerate
the electrons and positrons. Electrons are generated at the base of the linac by
“boiling” them off of a heated filament (similarly to how electrons are generated
in a television picture tube). After the beam of electrons is focused using electro-
magnetic fields (from a beam roughly 2 meters long into a bundle roughly 1 to
2 mm long containing over 20 billion electrons), the linac accelerates the electrons
through a 30 meter long vacuum pipe using the actions of microwave electric fields
generated in RF cavities.” The electrons reach an energy of about 300 MeV before
being injected into the synchrotron, where most of the energy build up is per-
formed. The positrons are generated at an intermediate point of the linac where
electrons accelerated to 140 MeV strike a tungsten plate. This produces a spray
of electrons, positrons, and X-rays, from which the positrons are selected, focused,
and accelerated through the remaining length of the linac (to about 200 MeV)
before they too are injected into the synchrotron’s beam pipe. This produces tight
groups or bunches of electrons and positrons that take turns being accelerated (in

opposite directions) in the synchrotron.

*See Section 1.15.1 for information on RF cavities.
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2.1.2  The Synchrotron

The bulk of the particle acceleration is performed in a circular accelerator, the
synchrotron, which sits just inside the storage ring. Acceleration is performed in
4 10-foot linear accelerators (again, using RF cavities) positioned around the syn-
chrotron’s beam pipe while the particles are bent around the ring via 192 10-foot
sections of bending magnets. After roughly 4,000 cycles around the synchrotron
over a period of about 10 ms, the electron or positron bunches reach their max-
imum desired energy of ~ 5.3 GeV and are injected into the storage ring.! The
procedure is repeated, alternating between the electron and positron bunches, un-
til the desired current for each is achieved in the storage ring (taking roughly 10

minutes at 60 alternations per second).

2.1.3 The Storage Ring

The storage ring is designed to maintain the energy level of the electrons and
positrons while keeping them separate as they travel through the same beam pipe
in opposite directions until they are purposefully brought together every cycle
at the interaction point. The beams are kept in the circular ring by a series of
dipole bending magnets while they are continually kept focused by quadrupole and
sextupole focusing magnets. The electrons and positrons are kept separate in the

horizontal plane using electrostatic separators.

T An electron or positron with roughly 5 GeV of energy is traveling at about
99.9999995% of the speed of light.
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During each filling (done numerous times during a typical running day) the
beams are held in the storage ring for times on the order of 90 minutes, crossing
millions of times each second. This places rigorous demands on the precision of
the magnets and requires that a high quality vacuum (many billions of times less
dense than atmospheric pressure) be kept within the beam pile. The vacuum is
maintained by a series of vacuum pumps distributed around the ring that use
a process called glow discharge to drive air molecules into metal electrodes. In
addition, the vacuum chamber and its interconnections are made of metal, allowing
them to be heated up to 150° C to drive out any trapped gas.

Though a circular path in the storage ring allows the beams to be maintained
and collided many times, it comes at a cost. Like any charged particle that is accel-
erated, as you change the direction (and thus the velocity vector) of the electrons
and positrons they emit radiation, in this case known as synchrotron radiation.*
The power dissipated by the synchrotron radiation at CESR is about a megawatt.
To restore the lost energy to the particles, another set of RF cavities are used
operating at a frequency of about 500 MHz. The synchrotron radiation is emit-
ted along the plane of the particle motion, colliding with the wall of the vacuum
chamber along a narrow band and producing heat. The unwanted heat is removed

using water circulating through a conduit in the vacuum chamber wall.

*At two points along the beam line (on either side of the collision region where
there is a high degree of bending) the emitted synchrotron radiation is used to
produce very useful analyses by a separate experiment known as the Cornell High
Energy Synchrotron Source (CHESS).
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2.1.4 CESR Performance

As indicated in Section 1.8.2, the instantaneous luminosity of the storage ring
provides a measure of its performance since it is proportional to the rate for any
given reaction produced in the storage ring. Further, the integrated luminosity
can be used to find the total number of events generated over a given period of

time. Two plots are provided to illustrate the luminosity performance of CESR:
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Peak (instantaneous) luminosities at CESR
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Integrated luminosity per year at CESR

Figure 2.2 shows CESR’s peak instantaneous luminosity each year from 1979 to
1997 and Figure 2.3 showing its yearly integrated luminosity over roughly that
period. CESR’s peak luminosity during the running of CLEO II was consistently

one of the world’s highest for a colliding beam experiment at that time.

2.1.5 Summary of CESR Operating Parameters

Provided here is a table summarizing CESR’s operating parameters [29, 48].



Table 2.1

Circumference:
Maximum Luminosity:

Injector Energy:

Operating Energy:

Energy Spread (oz/Ey):
Beam radius/Bunch Size:
Particles per Bunch:
Bunches per Beam:

Beam Circulation Frequency:
Average Beam Current:
Time Between Collisions:
Fill time:

Luminosity Lifetime:
Magnets in Ring:

Transverse Beam Emittance:
B* Amplitude Fen. at 1.P.:
Synchrotron Radiation Loss:
RF Frequency:

RF Complement:

Total RF voltage

Average RF power:

768.43 m, Traverse Time = 2.56 us
3 x 1032 ¢cm~=2 sec™!

120/300 MeV for linac

4-8 GeV for synchrotron

4.7 - 5.6 GeV per beam

0.71 x 1073 @ 5.3 GeV
[0.6(h)x0.01(w)x17(length)] mm

24 x 10%°

7

396 kHZ

110 mA

0.36 us

10 minutes

3 hours

86 dipoles + 106 quadrupoles

0.2-0.3 (h), 0.01 (v) rad-mm @ 5.3 GeV
1 m (h), 15 mm (v)

1.2 MeV/turn @ 5.3 GeV

499.765 MHz

2 RF regions with 2 x 5-cell cavities each
5 MV operating, 6 MV available

500 kW @ 5.3 GeV

96

A summary of operating parameters for CESR during the running of CLEO II.
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2.2 The CLEO II Detector

The CLEO II detector [49] is a large, multipurpose, hybrid particle detector
centered around the interaction region at CESR.* It provides a means of detecting
many types of charged and neutral particles that are produced by the electron-
positron annihilations so as to reconstruct a variety of events that researches wish
to study. It began taking data in October 1989 and finished its running in 1995 to

shut down for further improvements.

Figure 2.4

A three dimensional illustration of the CLEO II detector displaying its cylindrical
design.

*CLEO is not an acronym but is short for Cleopatra—a fitting companion for
CESR (Caesar).
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CLEO 1II possesses a cylindrically symmetric design, surrounding a length of
the beam pipe near the interaction point with a “barrel” of detectors and closing
off the two ends (except where the beam pipe enters and exits) with two “end-cap”
detector regions. This provides a large degree of solid-angle coverage around the
interaction region. A three-dimensional illustration of the detector is provided in
Figure 2.4.

Only particles that are stable or have lifetimes on the order of 10~ s or more
are directly detectable in CLEO II (other particles would decay before entering
any of the detectors). Such particles directly detectable by CLEO II are photons
(7), electrons/positrons (e*), muons (u*), pions (7%), kaons (K¥), and protons
(p*). Other particles of interest must be reconstructed from their detected decay
products.

In the barrel region, charged particles are first tracked in a series of three
concentric drift chambers comprising the central tracking system (see Figure 2.5 for
a side view and end view of CLEO II illustrating its main elements). Surrounding
the outer drift chamber is a system of scintillation detectors used to measure the
time-of-flight of the particles, and beyond that is a cylinder of crystal calorimeters,
which provide energy detection for both charged particles and photons. These

systems are placed within a 1.5 Tesla magnetic field provided by a super conducting

solenoidal magnet that surrounds them.* The last detector system a particle could

*Within the magnetic field, a charged particle will follow a curved paths whose
radius of curvature is proportional to the momentum of the particle.
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encounter is the muon detection system, which consists of proportional counters
interspersed with three layers of steal shielding (the steal return yokes of the afore
mentioned magnet). The end-caps consist of a time-of-flight counter as well as a set
of crystal calorimeters and a layer of muon detectors to provide fuller coverage for
those systems. Finally, the entire detector is encased by 2.5 cm think steel sheets,
forming the outer shell of CLEO II. The overall design of the experiment is meant
to provide good resolution for spatial, momentum, and energy measurements as
well as providing complete solid angle coverage.

For a general description of how each of these types of detectors work, see
Section 1.15. In the following sections the specifics of these systems are discussed
as they are implemented in CLEO II. Figure 2.6 provides a side view of one quarter

of CLEO 11, giving a closer view for reference.

2.2.1 The Beam Pipe

Particles exiting the interaction region first encounter the CLEO II beam pipe—
a necessary but unwanted obstacle between the interaction point and the detector
systems. It is a 33 cm long, thin walled beryllium (Be) pipe with a radius of
3.5 cm. The material and radial dimensions were chosen to minimize the wall
thickness while providing an acceptable aperture and being capable of meeting
vacuum requirements for CESR operation. To help protect the detector from

synchrotron radiation, the beam pipe walls are coated with 25 pym of silver and
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A close-up side view showing one quarter of the CLEO II detector.
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< 1 pm of nickel. The total thickness of the beam pipe wall is 500 gm, contributing

0.44% of a radiation length in the radial direction.*

2.2.2 The CLEO II Magnet

The CLEO II superconducting magnetic coil permeates the inner detector sys-
tems (the central tracking, time-of-fight, and crystal calorimetry systems) with a
uniform 1.5 Tesla magnetic field generated parallel to the beam line. It is wound
from a length of cable made from 0.6 mm diameter copper/niobium-titanium
(Cu/NbTi) superconducting strands surrounded by an aluminum stabilizer, giving
the cable a total cross section of 5 mm by 16 mm. It operates at a current of
3,300 A and is cooled by a liquid helium refrigeration system.

The magnetic field (or flux) outside of the detector is confined within a steel
return yoke running the length of the coil. The yoke is constructed of three layers,
each 36 cm thick and made from eight slabs to produce three concentric octagonal
cylinders surrounding the magnet. Each layer is separated by 9 cm from the next,
providing space for muon chambers and allowing the yoke to act as shielding for
the chambers. The flux return system is completed on either end by nested steel

rings that form pole pieces for the system.

*A radiation length can be defined as the thickness through a material an
electron beam must pass before its average energy is reduced by a factor of e .
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A charged particle passing through a magnetic field of B follows a curved path

whose radius of curvature (p) is proportional to its momentum (p):

p= Bpx <0.2998> GeV‘ (2.1)

Tm C

This allows precise measurement of a charged particle’s momentum given precise

measurement of its track (and thus its radius of curvature).

2.2.3 The Central Tracking System

The central (drift) tracking system (CD) is composed of three concentric drift
chambers that provide charged particle tracking (see Section 1.15 for a general
description of proportional counters and drift chambers). Each cylindrical chamber
is composed of concentric layers aligned along the beam axis. A mixture of argon-
ethane gas* is used to provide ionization and is maintained at different pressures
depending on the needs of each chamber. As a whole, these tracking systems cover
about 96% of the solid angle centered at the interaction region.

The innermost chamber is known as the Precision Tracking Layer (PTL) and
immediately surrounds the beam pipe with an inner radius of 4.7 ¢cm and an outer
radius of 7.2 cm. It is composed of straw-tube proportional counters arranged in
six concentric layers, each containing 64 cells and with each layer rotated by half a
cell from the previous one. See Figure 2.7 for an illustration of the cell placement.
Each cell is composed of a 15 pum diameter gold-plated tungsten anode wire held

taught with 22 g of tension and surrounded by an aluminized Mylar tube, which

*In 1992, the gas in the PTL was replaced with dimethyl ether (DME)



104

forms the cell’s field cage. The design of the chamber allows for tracking in the
plane perpendicular to the beam axis (the r — ¢ or x — y plane), but no information

in z (along the beam axis) is provided.

Outer Cathode Strips <

Layer 10 !
9 \i— .
81
7
Vertex Detector
+ SenseWire
. Field Wire

Inner Cathode Strips

PTL Detector
+ Sense Wire
O Field Tube : X }7 45cm
Be Beampipe H\,—/f 3.5cm
.\ |
.
\ K
/
\/
Interaction Point —»=+¢

Figure 2.7

A section of the PTL and CD systems showing cell layouts.

The vertex detector (VD) is the second chamber in the CD and immediately
surrounds the PTL with an inner radius of 8.1 cm and an outer radius of 16.4 cm.
It is a drift chamber composed of 800 high voltage sense wires and 2,272 field-

shaping wires arranged in 10 layers staggered by a half-cell spacing from one layer
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to the next. The arrangement surrounds each sense wire with six field wires to
form the field-shaping cell. Figure 2.7 shows a layout of the cells in the VD as well
as in the PTL. The layers are divided into an inner group with 64 cells per layer
and an outer group with 96 cells per layer. The sense wires are all axial (aligned
parallel to the beam pipe and thus providing r — ¢ information). They are made
of a nickel-chromium alloy with about three times the resistivity of gold-plated
tungsten. This allows for charge division measurements where differences in pulses
read at both ends of a wire (due to the different lengths the signal travels in each
direction) are used to gain information about the z position of the track.

The inner and outer cylindrical shells of the VD are lined on the interior with
a series of segmented rings, each composed of eight cathode strips etched in alu-
minum foil and bonded to Mylar sheets. See Figure 2.8 for an illustration of the
placement of the cathode strips. These strips shape the field cage and allow posi-
tion measurements along the z axis of the detector. They register an image of the
charge deposited on adjacent anode wires with avalanches on a sense wire spread
over three cathodes. In addition to providing tracking close to the interaction
region for precise vertex finding, measurements from the PTL and VD are also im-
portant for low-momentum particles, which can form tight curls in the magnetic
field and may not hit many wires in the outer drift chamber.

The outer drift chamber (DR) is the main tracking chamber and immediately
surrounds the VD with an inner radius of of 17.5 cm and an outer radius of 95 cm.

It is composed of 12,240 high voltage sense wires and 36,240 field wires, arranged



106

Filament
Tube

Figure 2.8

Cathode strip placement in the VD

in 51 layers of cells with 3 layers of field wires per cell (see Figure 2.9 for an
illustration). Every other layer is offset by half a cell spacing. The sense wires
are 20 pm diameter gold-plated tungsten wires held taught with 50 g of tension.
While 40 of the layers are aligned axially, staggered between those are 11 “stereo”
layers that are strung with the ends offset from one another to produce an angle
of 3.8° to 6.9° with respect to the beam axis. In conjunction with the other layers,
the stereo layers allow for measurement of the z as well as r and ¢ positions of the

tracks. The cathode strips used on the interior of the inner and outer shells of the
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Cell structure of the outer drift chamber (DR).

DR provide further z information and are 1 cm wide in z and 7.35 cm in azimuth.

Placement of these strips is illustrated in Figure 2.10. Avalanches from one wire

are spread over six of these cathodes in the DR.

In addition to providing tracking and momentum measurements, the DR also

allows for a degree of particle identification by measuring the energy lost by a

particle (as it produced ions to form the track) per unit track length, which is

known as specific ionization or dF/dz. Different particle types will have different

dE/dz as a function of their momentum. Figure 2.11 shows a plot of this effect
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Cathode strip placement in the DR

for four particle types and shows that the best separation between them occurs at

low momentum.

2.2.4 The Time-of-Flight System

The time between an ete™ crossing in the interaction region and when a re-
sulting particle exits the central tracker is measured by the time-of-flight (TOF)
system. Combined with the momentum and tracking measurements in the DR, the

TOF information can aid in particle identification (see below). Its fast response
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just outside of the magnetic flux return system where high quantum efficiency

photomultiplier tubes read the output and can operate in a relatively low mag-
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Figure 2.12

Side view of a single barrel TOF counter and connectors

netic field. Figure 2.12 displays a side view of a TOF counter and its connectors.
Coverage on each end-cap is provided by 28 wedge-shaped scintillators that form
a disk with an inside radius of 31.5 cm and an outside radius of 89.0 cm. Their
photomultiplier tubes are attached directly to the scintillators and are designed
to operate in a high magnetic field. The layout of the end-cap TOF counters is
illustrated in Figure 2.13. The entire TOF system provides a solid angle coverage
of about 97%.

A particle of mass m with a momentum p measured in the DR will have a

velocity given as

[ (22)
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Configuration of End-cap TOF counters

where § = v/c. Thus if its flight path measured in the DR has a length of L, its

time of flight would be

L L L 1+m202
e ¢ p?

(2.3)

Therefore, combined with the measured flight path and momentum in the DR, the
time-of-flight information place constraints on the mass of the given particle and
aids in identifying its type. Figure 2.14 displays a plot of measured 1/ versus

particle momentum, indicating the different graphs for different particle types.
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Figure 2.14

A graph of 1/3 versus momentum (from measurements in the barrel TOF and
drift chambers) for different particle types.

2.2.5 The Crystal Calorimeter

Energy from both charged particles and photons is deposited and measured in
the crystal calorimeter (CC), a shower detector that surrounds the TOF system.
The CC is composed of thallium-doped cesium iodide (CsI) crystals, each roughly
5 cm square by 30 cm long (the latter being 16.2 radiation lengths). The barrel
portion of the CC contains 6,144 crystals arranged in a holder with a tube-like

formation and with the inner face of each crystal pointing towards the interaction
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region (see Figure 2.15). This provides coverage for 71% of the solid angle. Each
end-caps is covered by 828 crystals in a formation illustrated in Figure 2.16. In

all, the system covers 90% of the solid angle.

Outer Skin

Longitudinal Rods

Lateral Fins

Longitudinal Fins

Figure 2.15

A section of the holder for crystals in the barrel CC

The light produced by showers in the crystals is detected by four silicon photo-
diodes mounted on a lucite window on the rear face of each crystal. They convert
the light into electrical signals that are digitized for analyzing. The shower en-
ergy is proportional to the energy of the particle that produced it and is generally
spread over many adjacent crystals. While hadrons will interact strongly in the

crystals and spread energy over more crystals, photons and electrons interact only
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Figure 2.16

Layout of the end-cap crystals

electromagnetically, and their energy spread tends to be less. Special clustering
algorithms help account for all the energy deposited by a given particle while anal-
ysis of the shower shape and spread can help distinguish hadrons from photons
and electrons. Since photons, being neutral, leave no tracks in the CD, they can

be further identified by showers that are not matched to CD tracks.

2.2.6 The Muon Detector
Due to their particular qualities, muons traveling through the detector can be
identified via the Muon Detector (MU). Because hadrons interact both electro-

magnetically and strongly they are generally stopped in the steal return yoke of
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the CLEO magnet. Leptons do not interact strongly and the more massive they
are, the further they can travel through matter before being stopped by electro-
magnetic interactions. A 7 (the most massive lepton) generated at the interaction
region does not live long enough to leave the beam pipe before it decays, while
the stable electron (the least massive charged particle) is easily stopped in matter.
However, the u, having a mass over 200 times that of the electron and a lifetime
long enough to pass through the detectors, is the most penetrating particle that
is directly detected at CLEO. A p with a momentum greater than 1.5 GeV/¢ will
not be stopped by the TOF or CC systems and will readily penetrate the steal
return yoke. Thus, the gaps between the yoke layers and just outside the outer
layer are filled with proportional counters, and a particle that pass through these

detectors leaving a clear track can justly be considered a muon.

Figure 2.17

Schematic of muon chamber tubes
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The muon detector around the barrel region consists of three “super-layers” in
the shape of three concentric octagonal barrels (two between the yoke layers and
one outside the outermost yoke layer). Each super-layer contains three layers of

" which function similarly to drift chambers. Additional

“plastic streamer counters,’
muon detectors cover each end-cap as well. Figure 2.17 shows one of the chambers
that comprises the counters while Figure 2.18 displays the layout of the streamer
tubes in a super-layer. Each tube contains a 50 pym diameter gold-plated tungsten
anode wire while copper graphite coating on three sides of each tube provides the

cathode. Copper strips run perpendicular to the tubes along the uncoated side

and provide an orthogonal coordinate along with the use of charge division.

Copper Cathode Stri
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1= ]
Anode Wire —__|| L/
T . . . . . . . . . .
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Gaphite Cathode \ f

Copper Ground —__

Figure 2.18

Layout of muon chambers in a super-layer
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2.2.7 The Trigger System and Data Acquisition

During the running of CLEO II, the e™ and e~ beams in CESR each contained
seven bunches traveling the 768 m circumference of the ring at nearly the speed
of light and thus producing over 2.7 million crossings per second. Only a fraction
of those crossings produce events worth storing for analysis. The limitations of
the tracking system electronics further reduces the rate at which events can be
measured, but under this constraint alone, the data rate would still be unmanage-
able and an unacceptable number of unwanted “background” events would still be
present. CLEO thus employs a trigger system that uses fast, hardware-based logic
algorithms to select good candidate events while making the data acquisition rate
more manageable.

There are three stages to the hardware-based trigger system known as level 0
(L0), level 1 (L1), and level 2 (L2). The most basic trigger, L0, is designed to be
fast and simple while still providing reasonable discrimination. The fastest system
in CLEO 1T is the time-of-flight system with signals in the photomultiplier tubes
being ready within 55 ns (a rate of ~ 18 MHz). It can thus be turned on and off fast
enough to be active only during every beam crossing (a process known as gating).
Along with the VD and the CC, the TOF thus composes the L0 trigger system,
which reduces the rate of potentially useful events to about 20 kHz (once every

50 ps).* Once an event passes L0, all gates to the detector systems are disabled

*As a side note, if not read out, data in the detector will decay away with a
time constant of about 1.3 us.
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while the L1 logic is initiated. The L1 trigger gathers information from the TF,
CC, VD, and DR and requires about 1us (thus causing about 2% dead time for
the L0 trigger as it waits). If an event does not pass L1, the trigger logic is reset
and detector gating is resumed, otherwise gating remains disabled. Events pass L1
at a rate of about 25 Hz, depending on CESR’s luminosity, and are then passed
to the highest level hardware trigger, L2. The L2 trigger has a readiness time of
about 50 us (causing a negligible dead time given the ~25 Hz rate at which data
passes L1) and includes tracking information from the VD and DR. The criteria
for passing L2 further reduces the readout rate to about 10 Hz. Data that passes
L2 is read out by the data acquisition system (DAQ), and after the L2 decision is
made, the trigger logic is reset and detector gating is resumed.

Events read out by the DAQ are subjected to an additional “level 3” software
filter that tests event quality and reduces the data rate by another 30-40%. Data

passing L3 is stored for later analysis.

2.2.8 General Event Reconstruction and Display

The information stored while data is actually being taken (an “online” process)
is ultimately run through an involved off-line reconstruction routine known as
PASS2. That process performs complex tasks such as precise track fitting, vertex
finding (determining where two tracks might have come from a single point, forming
a vertex), matching CD tracks to hits in the CC, analyzing dE/dz data, etc. This

information is then stored for further use by individual researchers who will run
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their own routines to find and analyze events of interest to their specific research
projects.

An event display is useful for visual inspection of individual events and to
help ensure that the systems are producing proper results. Two examples of such
displays are shown in Figures 2.19 and 2.20, the first showing a simple et +¢e¢~ —
™+ p + 7y event, and the second showing a more complex e +e~ — BT + B~
event (labels have been added for illustration). The center of these displays is an
r — ¢ view of the hits in the CD (and can include the tracks fit through those hits).
A small strip around the larger inner region shows the barrel TOF hits. Out from
that, the CC chamber is displayed as if looking through a tube (thus indicating
hits in z as well as ¢ while r is constant). Finally any hits in the muon chambers
are shown in an r — ¢ projection of those chambers that sits out from the CC
display. It is also possible for such displays to show hits on the end-cap detector

elements as well.

2.2.9 Summary of CLEO II Parameters and Resolution
A series of tables is provided below to summarize the operating parameters and

resolutions of various CLEO II components.
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Figure 2.19

A CLEO II event display example showing a ete” — p*p~ v Monte Carlo (com-
puter simulated) event. The central region shows an r — ¢ projection of tracks
in the CD (PTL, VD, and DR). A thin strip surrounding the DR shows hits in
the barrel TOF. Out from there, hits in the barrel CC are displayed as if looking
down the inside of a tube, providing information on hits in ¢ and z (with inner
circles nearer the east end and outer circles nearer the west end of the detector).
Finally, an » — ¢ projection of hits in the barrel muon chambers is given. In the
event shown, the ;= CD tracks leave hits in the calorimeter and clear tracks in the
muon chambers. This is also a radiative event, and the photon () was measured
in the calorimeter. Random hits also appear from various sources of noise.
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Figure 2.20

A CLEO II event display example showing an e~et — B~ B* Monte Carlo event
with each B further decaying in the detector. The decay chain for each is shown.
The B, D, K° 7, v, and 7° particles do not appear in the detector and in practice
are inferred from the data. Particle labels have been added for illustration.
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Table 2.2

Parameters of the CLEO II superconducting coil.

The Superconducting Coil

Magnetic field: 1.5 T, uniform to +0.2% over 95% of the solid angle
Diameter: 2.9 m through bore, 3.1 m with coil
Length: 3.5 m coil, 3.8 m with cryostat
Weight: 700 kg coil, 20,000 kg cryostat, 800,000 kg return yoke
Coil Specific: 3,300 A, 4.6 H, 25 MJ

Cooling: liquid helium via self-regulating thermosyphon

Table 2.3

Parameters of the CLEO II central tracking system.

The Central Tracking System

Inner Radius (cm): 4.7 (PTL), 8.1(VD), 17.5(DR)
Outer Radius (cm): 7.2 (PTL), 16.4(VD), 95.0(DR)
Number of Axial Layers: 56 (PTL: 6, VD: 10, DR: 40)
Number of Stereo Layers: 11 (DR)
Number of Sense Wires: 64 (PTL), 800(VD), 12,240 (DR)
Number of Field Wires: 2,272 (VD), 36,240 (DR)
Cell Geometry: straw tubes (PTL), hexagonal (VD),
rectangular (DR)
Gas Used: argon/ethane (50%/50% mix)
(PTL gas replaced with DME in 1992)
Solid Angle Coverage: 96%

2
Transverse p Resolution: (6p;/p;)? ~ (0.0011 Gg//c) + (0.0067)*

Angular Resolution: d¢ = 1 mrad; §¢ = 4 mrad (at 5 GeV)
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Table 2.4
Parameters of the CLEO II time-of-flight system.

The Time-of-Flight System

Scintillator: Bicron BC-408
Number of Counters: 64 Barrel, 28 per end-cap
Photomultiplier Tubes: Modified Amperex XP2020 (barrel)
Hamamatsu R2560 (end-cap)
Coverage in Polar Angle: 15° — 36° west end-cap
36° — 144° barrel
144° — 165° east end-cap
Time Resolution: barrel: 139 ps (high-p electrons)
154 ps (low-p )

end-cap: 272 ps (high-p electrons)

Table 2.5

Parameters of the CLEO II crystal calorimeter.

The Crystal Calorimeter

Crystal Material: thallium doped cesium iodide [CsI(T1)]
Number of Crystals: 6,144 barrel, 828 per end-cap

Solid Angle Coverage: 95%

0.0035 GeV  0.001F
F0.75  GeV

(1.5% at 5 GeV, 3.8% at 100 MeV)

End-Cap: (2.6% at 5 GeV, 5.0% at 100 MeV)

oF
Photon Energy Resolution: Barrel: = 0.019 +
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Table 2.6

Parameters of the CLEO II muon detector.

The Muon Detection System

Type of Chambers: plastic streamer proportional counters
Number of Layers: 3 detector layers per super-layer
3 super-layers around barrel
1 super-layer on each end-cap
Shielding: 2.2 nuclear absorption lengths
(A=16.8 cm) for innermost layer
Depths of Steel Absorber: 36, 72, and 108 c¢m for layers in barrel
Identification Efficiency: 98.6 + 1.6% for penetration ~ 5\
Solid Angle Coverage: 85%

Table 2.7

Parameters of the CLEO II trigger system.

The Trigger System

Trigger Type Systems Used Mazx. Acceptance Rate
Level 0: | TOF, VD, and/or CC 20 KHz
Level 1: | TOF, VD, CC, and DR 50 Hz
Level 2: VD and DR 25 Hz
Level 3: Software Filter 10 Hz
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3. INTRODUCTION TO THE ANALYSIS

The study of particle decays is a mainstay of high energy physics. Such study
provides insight into the nature of both the fundamental particles involved and
the forces that mediate the given decay. The 7, being the most massive lepton,
produces a variety of interesting leptonic and semileptonic decay modes for study.
This analysis pursues the study of 7% — 7¥757¥ (7, /v,) decays in an attempt to
better understand its substructure.

There is much to learn about the complicated substructure of the 7+ —
7ErE 7T (v, /v;) decay, which proceeds through a weak transition current with a
dominant axial vector component and a meager but interesting pseudoscalar com-
ponent. Although a model-independent description of the structure is desirable,
for reasons given below this analysis pursues a model-dependent fitting technique
that utilizes all available kinematic information from each selected decay. Motiva-
tion for this particular analysis is presented here while later chapters discuss the
event selection, the model used, the fitting method, and the primary results of the
analysis. Two variations to the model are also considered, and results produced

by those variations are presented as well.
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3.1 Motivation for Studying the 7* — 777 ¥ (7, /v,) Decay

The [37%]~ system in the 75 — 77*7¥ (7, /v,) decay provides a means of
studying the axial vector weak hadronic current. The transition is dominated by
the a;(1260) primary resonance whose decay in turn is dominated by the (mainly
s-wave) pr intermediate state. While a variety of models have been proposed to
describe the a; system [51-56], they provide a somewhat insufficient description
of the data. In addition, even less is known of the pseudoscalar resonance contri-
bution to the current, which, though small, should theoretically exist (presumably
dominated by the 7' primary resonance). Further experimental study is needed to
better understand these systems.

The details of the 75 — 7*7*7¥ (v, /v,) decay are contained in four form
factors, F}, Fy, F3 and F,;. Although this analysis provides a study of all the
contributing form factors, it is particularly interested in extracting information
about the pseudoscalar form factor, F};. If enough information is gained concerning
this pseudoscalar contribution, it could be used to place a lower limit on the light
quark running masses in the QCD Lagrangian [57].

The QCD Lagrangian involves seven parameters that must be experimentally
determined: the gauge coupling constant (sometimes denoted ¢) and six “running
masses” associated with the quarks. Of these parameters, m,, mg, and mg are the
least well measured. Obtaining experimental information concerning these light
quark masses will increase knowledge of the standard model in general, and of the

QCD Lagrangian parameters in particular. In addition, placing an experimentally
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based limit on the light quark masses can theoretically provide checks for standard
chiral perturbation theory and help in understanding of strong CP violation [57].
Specifically, results on pseudoscalar contributions in this analysis can be used to

place a lower limit on the average of the up and down light quark running masses.

3.2 Using a Model

Although it would be desirable to experimentally characterize the structure
of the [37%]" system while making no model-based assumptions, this analysis
has focussed on a model-dependent approach for two main reasons. First, it is
noted that a model-independent approach would assume a general format for the
hadronic current that allows one to separate and analyze the complex magnitude of
the axial vector and pseudoscalar components in bins of the invariant mass of the
[37%]~ system squared (@Q?) and in the two Dalitz plot variables (s; and s;). That
method would make no assumptions concerning resonances in the decay. However,
in certain chiral limits, scalar effects can be induced in the current from both the
broad a; resonance and non-resonance contributions in the current [58]. Although
these effects are expected to be small compared to any real pseudoscalar effect, a
model-dependent method can explicitly assume the resonance structure and thus
resolve any possible fake, induced pseudoscalar effects. See Section 5.5 for further
discussion.

Secondly, a model-independent method requires that one bin the data in three

dimensions (Q?, s;, and sy). To thoroughly explain the decay structure, rela-
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tively small bins would be required, and the amount of data available for fitting
in each bin would thus be greatly reduced from the entire set. This is especially
problematic if one expects complicated resonance structures whose effects would
only be noted by results in certain specific bins. If the binning is insufficient or
the data in the important bins is inadequate for fitting, the resonance structure
could be unnoticeable. By using a model-dependent fit, one can make reasonable
assumptions about the resonance structure and study the likely existence of each
resonance modeled while using the entire data set in the fitting and without the

need for binning.
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4. DATA SAMPLE AND EVENT SELECTION

The analysis uses 4.67 fb™' of eTe~ collisions with an average center-of-mass
energy of around 10.6 GeV. This corresponds to the production of approxi-
mately 4.3 x 10° ete” — 777 events. The background analysis, testing pro-
cedures, and systematic error study require the use of 7 Monte Carlo. The KO-
RALB/TAUOLA [59] program was used to generate the events; however, the

* — rErtr¥ (v, /v,) decays were generated with CLEO-specific modifications

* — 757%7%(#, /v,) analysis in [60] once they were

based on results of the 7
isospin-rotated to the all charged mode. Events were then passed through the
GEANT-based CLEO II detector simulation package [61]. Finally, the Monte
Carlo events were processed using the full CLEO event reconstruction routines.
The 7’s in a pair produced in CESR with each receiving half of the center-
of-mass energy will travel back-to-back from the interaction point, each with a
velocity of ~ 0.94 ¢ in the lab. They would decay after traveling less than a
quarter of a millimeter and their decay products tend to produce back-to-back

“jets.” The v, and 7, produced are undetectable in CLEO, and events must be

reconstructed with that in mind.



130

Given that general event anatomy, the criteria used by the event selection
routine performed on both data and Monte Carlo can now be described (for a
summary, see Table 4.1). The process only selects events that have a 1-charged-
track versus 3-charged-track topology. The 1-track side is considered the “tag”
side of the event, and it is used to help identify the event as a ete™ — 777~
process. It must either be classified as a 7F decaying to efv v, utv,v,, ptu,

+

(in which p™ — 777%), or 7#*,; or it can be classified as a 7 decaying to the

charge-conjugated counterparts of those modes.

Tracks from e*

are identified by first comparing the energy they deposit in
the calorimeter to their track momentum. For electrons (which deposit much of
their energy when they shower in the calorimeter) the ratio is expected to be
E/p > 0.85. The specific ionization along the track (dE/dx) is also required to be
within 2 standard deviations of the expected value for electrons. Tracks from p*
(which are more penetrating due to their mass) are identified as tracks that leave
a relatively small amount of energy in the calorimeter (F < 0.6 GeV) and have
measured dF/dx within 2 standard deviations of the expected value for muons.
Other tracks are assumed to be pions, which are plentiful in CLEO events. When
a 7 track is identified on the “tag” side of the event (as determined below), the
search for a corresponding p candidate begins by identifying well defined photon
pairs in the calorimeter with a combined energy and momentum consistent with

a m° coming from the “tag” side. Such a 7° candidate is then combined with
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the m track to produce a p candidate, which is then required to have a mass of
0.620 GeV < m < 0.920 GeV (where the nominal p mass is 0.770 GeV [29]).

For each event, tracks that could be “fakes” from secondary interactions with
the beam pipe (or other detector components) or from poor track finding are first
identified and removed. Four “true” tracks are then required to be present with
a combined charge (deduced from the direction of curvature for each track in the
magnetic field) of zero. To help ensure that these tracks did not come from a
secondary decay process, their fit-projected tracks are required to have a close
approach to the interaction point (0.01 m in r — ¢ and 0.10 m in the poorer
measured z direction). To ensure they are reasonably well measured tracks, each
is required to be found largely within the “barrel” region of CLEO II. Further, to
reduce QED backgrounds such as two-photon interactions and radiative Bhabha
scattering (ete”—eTe™ where a radiative effect produces other tracks), no more
than one of the four tracks is allowed to be identified as an electron.

The 1-versus-3 topology is then required by finding the most isolated track and
requiring that it be more than 90° away from all other tracks.” This divides the
event into two hemispheres by defining the region of solid-angle within 90° of the
most isolated track as the “tag-side” while defining the other hemisphere as the
“signal-side” of the event. To help ensure a signal decay that is well measured, at

least two of the three signal tracks are required to have momenta that can be best

*Other topology selection methods were tested, but this one produced the best
results in Monte Carlo tests.
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measured in CLEO (between 0.3 MeV and 4.0 MeV), be within 0.005 m from the
interaction point (to remove events that contain K? vertices, for example), have
at least 39 hits in the central tracking system (CD), and have a reasonably good
agreement between the fitted tracks and the actual CD hits (the total root-mean-
square of the differences along a track is required to be less than 500.0 x 107).
Further, all three tracks are required to have at least two hits in the precision
tracking layer (PTL) and eight hits in the main drift chamber (DR).

QED backgrounds are further reduced by making various cuts on the missing
energy and missing momentum from charged tracks (since T events must have a
degree of missing energy and momentum from the unmeasured v,’s). The missing
energy (Episs) is defined as the center-of-mass energy minus the combined energy
of the charged tracks, while the total missing momentum vector (pPmiss) can be
found from the vector sum of all the track momenta (which would be zero if all
the momentum in the event were contained in the charged tracks). The cuts first
reject events in which the missing momentum is directed down the beam pipe
(| cos Omiss| < 0.9, indicating that a decay product could have escaped without the
chance of being measured). They further require that the missing energy and the
transverse component of the missing momentum both be sufficiently large (Fpss >
0.10 Eem and pt .. > 0.03 E,). Comparisons between data and 7 Monte Carlo
additionally indicated that events with higher missing energy should be required
to have higher missing transverse momentum. It is thus required that pt .. /Fc, >

0.50 Eriss/ Fem — 0.25. The last three cuts are displayed graphically in Figure 4.1,
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Table 4.1

Summary of event selection criteria

“True” tracks: Require 4 “non-fake” tracks with zero total charge
Quality of the Require close approach to interaction point
4 tracks: (0.0l minr—¢, <0.10 m in z)

Require each track have cosf < 0.85

Require no more than one track ID’ed as e

1 vs 3 topology: Find most isolated track
Require it be > 90° from others

Define “tag-side” by its direction

3-track quality: Cuts are made to ensure that the signal tracks

are reasonably well measured

Tags: Use dE/dzx and calorimetry to I.D. e and p tags
p: tag good candidates with 0.620 GeV < m, < 0.920 GeV

All others tagged as «

Missing E and p: Require pijss not be down beam pipe
(from charged tracks) Require Epjss > 0.10Ep,
Require pt ... > 0.03E,y, (transverse missing momentum)

Require 2-D cut: p' ../ Eem > 0.50Emiss/Eem — 0.25

Extra showers: If photon-like or well isolated from tracks
Cut event if Egower > 0.150 GeV
Otherwise

Cut event if Eghower > 0.300 GeV

K vertex cut: Cut good vertex if 0.485 GeV < mytx < 0.510 GeV
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where the cuts are drawn on plots that show two dimensional distributions in
Priss/ Fem and Episs/Fen for both real and Monte Carlo data. Also shown are
one dimensional data and 7 Monte Carlo comparisons of p! .../ Fem and Eniss/ Eem
distributions before and after the cuts are applied.

Because extra photons in the event would indicate an undesired process (e.g.,
7~ — 7t a7 7', or unwanted radiative events), cuts are performed based on
extra showers found in the calorimeter for each event. First, the cuts ignore show-
ers that are associated with charged tracks, shower fragments from larger showers,
showers associated with a p on the tag side, showers within about 18° of a tagged
electron (which can radiate), and showers with cos > 0.95 (which are not directly
from the interaction region since such showers would have escape unmeasured
through the ends of the detector). The remaining “extra” showers are then ex-
amined to determine if they are photon-like by comparing the energy deposited
in the nine cells immediately surrounding the shower to the energy deposited in
the 25 cells surrounding those nine (called an E9/E25 measurement). Photon
showers are expected to form a tight cluster, and the £9/E25 measurement for a
shower identified as photon-like is required to match the expected value for true
photons with a 99% confidence level. Showers are also identified as being well iso-
lated from all tracks if their distance from the closest track is greater than 25 cm.

For extra showers that are either photon-like or well isolated, the event is cut if

Eghower > 0.150 GeV. For other extra tracks, events are cut if Fgpower > 0.300 GeV.
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An additional background to reject are those containing decays through a K?.
This background is largely reduced by the earlier requirement of a small distance of
closest approach for each track on the signal side. However, an additional vertex cut
is performed to further reduce this background. Vertices are considered in which
neither track escapes through the end-caps of the detector and their distance from
one another in z at the r — ¢ intersection point is no more that 5 times the error
in the measurement of that distance. The vertex must also be at least 2 cm from
the interaction point. For such vertices, the event is cut if the mass of the vertex
is between 0.485 GeV and 0.510 GeV (the K? mass being 0.498 GeV [29]).

Figures 4.2 and 4.3 show CLEO event displays for a selected p-tag and a selected

p-tag event respectively (both Monte Carlo).

4.1 Backgrounds and Selection Results

Using the criteria given above, event samples (or skims) were chosen from data
and Monte Carlo simulations to investigate background events in the final data
selection. Studies on real data and non-7 Monte Carlo data indicate that the non-
7 contamination in the event selection—consisting mainly of continuum (e*e™—¢q
where ¢ is either a u, d, ¢, or s), BB, and two-photon events—is on the order of
1%. This insignificant source of background has thus been ignored in the analysis.

Backgrounds from 7 events are studied using 7 Monte Carlo simulation. All
possible 7 backgrounds are categorized using combinations of the Particle Data

Group (PDG) basis modes (a selection intended to encompass all well established
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Event display of a Monte Carlo accepted event where the tag sideis 7= — p~ v, —
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\TU 630 MeV/c

Figure 4.3

Event display of a Monte Carlo accepted event where the tag side is 77 — p*r,.
The hits in the muon chamber on the tag side can be seen clearly.
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7 decay modes and in which the branching fractions sum to 100%) [29]. The
definitions of the signal and background modes used and the selection efficiencies
for each (as found by applying the above selection criteria to Monte Carlo data)
can be found in Table 4.2.

To help validate the results reported from the Monte Carlo skim, the following
test was performed: using the reported efficiencies for the background modes,
the PDG branching ratio of each mode, and the expected number of 7-pairs, one
can estimate the total number of background events expected in the data skim.
Subtracting that from the number of selected events and adjusting for the reported
signal efficiency, one can estimate the total number of signal events expected in the
original data sample. That result thus predicts a branching fraction for the signal
mode, which should compare well with the PDG value if the reported efficiencies
from Monte Carlo represent the actual efficiencies in the data skim. The test
predicted a branching fraction of 0.0910 4+ 0.0003 4= 0.0007, whereas the PDG gives
a value of 0.0913+£0.0011. This indicates that the skim is valid and that efficiencies
(and background fractions) are represented reasonably with the Monte Carlo.

The skim selects 148,000 data events. In addition to the given skim criteria,
during the fitting procedure each event is required to meet reasonable kinematic
requirements meant to ensure that the measured event could have been produced
in a true 7 — 71T (v, /v,) decay (see Section 6.2). This results in 145, 000
events being used in the final fitting with an overall skim efficiency of approximately

0.176 and with 11.0% background from 7 events as determined from Monte Carlo.
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Table 4.2

Makeup of the 7 background according to Monte Carlo studies. The “% of selected
events” is the percentage of each mode in the final selection after accounting for
difference between the PDG B fractions and the percentage of input events found
for each mode. The PDG basis modes sum to 99.995% due to round off, and the
remaining 0.005% is arbitrarily assigned to all modes not found in the PDG basis.

B Frac.
Mode : Oft tc(’z(fed Skim  fom " Oft (170 (Zfd
D (lalxlfl(jllllts Ssvents eff. PDG ;35118 SEVZiltes

(%)

3m (signal) 2,973,307 521,915 0.17553  9.1300 8.9955  88.9650
1-prong, no 7¥ | 12,478,521 486 0.00004  46.9890  47.1930  0.0810
1-prong, >0 7° | 10,323,615 4,201  0.00041  36.2630  36.4810  0.7010
3rm® or 3h2r° 1,454,097 35,344 0.02431  2.5800 4.2944  3.5660
3h > 270 3,506 1 0.00029  0.1300 0.0101  0.0020
2K or 27K 158,907 29,380 0.18489  0.4310 0.4602  4.6210
(72K or 27K) 70 7,109 226 0.03179  0.1000 0.0205  0.1850
K" 294,096 3,101 0.01054  0.9000 0.8532  0.5490
KK? 55,019 697 0.01267  0.1550 0.1591  0.1140
hK%70 190,645 322 0.00169  0.5370 0.5524  0.0530
w2K° 34,922 189 0.00541  0.1190 0.1009  0.0370
5h> 0x® 27,729 13 0.00047  0.1000 0.0802  0.0030
hn > 070 65,173 138 0.00212  0.2010 0.1885  0.0250
hw > 0n° 162,915 1,303 0.00800  2.3600 0.4718  1.0950
NOT IN BASIS 48,088 461 0.00959  0.0050 0.1390  0.0030
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5. THEORY AND MODEL

In this section, the basic model used in the analysis will be presented, followed
by modifications to that model. It begins with the proposed model-independent
concepts used in describing the 7+ — 77*7T (v, /v;) decay and from which the
standard (reduced) form factors arise. Also presented is a more model-dependent
approach from which a set of “extended” form factors originate. The chapter
goes on to explain how the form factors were modeled in this analysis, and two
modifications to this model are presented. Finally, the differential decay rate is
rewritten in light of the form factor formulas to make it more convenient in the

fitting.

5.1 Description and Parameters of the Decay
A Feynman diagram of a 7= — 7~ 7 7 "v, decay is shown in Figure 5.1, and
an often used, full kinematic description of the decay is presented in Appendix G.
In this section, specific notations used for describing the decay will be defined.
The 4-momenta of the three pions are denoted as q;, q2, and qsz such that
Qs = 4.7 and |¢3] > |¢i] in the three pion rest frame. As a convention, the

components of the 4-momentum are denoted q; = (E;, G;).
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a

(b)

Feynman diagrams for a 7= — 7~ 7~ 7 tv, process. The dominant resonance struc-
ture is shown through a; — 77 p° — 77~ 7. The two diagrams indicate an
ambiguity from not knowing which 7~ was produced from the °.

The following kinematic factors are defined for convenience:

Q = ait+a+as,
h; = q;+
Pi = 4 — Gk,
a; = h;—q,

where i, 7, k are cyclic € (1,2,3) and i # j # k.

(5.1)

The invariant mass-squared of the three pion system is thus denoted Q?, while

the three 2-body invariant masses squared are defined by

(5.2)
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Note that the numbering scheme given above produces an ordered pair of Dalitz
plot variables such that s; > s, in all cases. Also note that given )2, s;, and s,

the value of s3 is fully determined (s3 = Q* + 3m2 — s — s5).

5.2 The Differential Decay Rate and the Hadronic Current

The matrix element for this semileptonic 7 decay can be written

M = COSHCG—\/gMuJ“, (5.3)

where 6, is the Cabibbo angle (cosf. = V,4), G is the Fermi coupling constant,
M,, describes the lepton current for the 7 transition to the v, J* is the hadronic
current describing the production of the three charged pions, and the Einstein
summation convention is employed as usual (see Appendix B).

The lepton current is given via the standard V' — A theory of weak interactions:

My, = (P, Iy (gv — gars) [¢0), (5.4)

where the relative V' and A couplings are equal (g = g4 = 1) in the standard
model.
The differential decay rate for the decay is then obtained as usual from the

square of the matrix element:

1 G%‘ Vu2d

~ om, 2

AT, 371 (5, Jus) {L,, H*"}dPSY, (5.5)
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where dPS™ is the proper four-body phase space element, L,, = M,(M,)! is the
well understood lepton tensor,* and H* = J#(J¥)! is the hadronic tensor. This
analysis intends to explore the structure of the hadronic current, J*.

Nominally, the hadronic current that describes the production of three hadrons

is written in terms of axial vector and vector currents:

JHai,qp,q3) = Jh+Jp
(5.6)
= (hi(a1) ha(az) ha(as) | dyuu + dysyuu | 0).
From here one can consider two ways to characterize the current. The first,

more general characterization is conducive to a model-independent approach in-

volving four form factors:

JH(qi, do, q3) = VI'Fy + V' Fy + iV Fs + V/'Fy, (5.7)
where
‘/1“ = TWplw
Vv2u = TMVPQV?
(5.8)
VI = e Pq1,495G3,
Vi = QF,

and TH = g —Q"Q" /Q?. Note that the form factors are functions of Q?, s;, and
so. Further, F} and F, moderate the axial vector components in the current, Fj
moderates the vector component, and F; moderates the pseudoscalar component.

However, for the 37 final state, G-parity conservation would require that Ji: = 0.

*A general formula for the lepton tensor is given in Appendix F.
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Thus F3 = 0 in the above equations, and here one need only be concerned with
axial vector and pseudoscalar contributions to the transition current.

The current can also be characterized in a model-dependent approach as follows:

Nfe’é Ns{cub
TH(an az,a3) = > [ Be(@) D BEi™ | (5.9)
k=1 =1

where the first sum is over the primary resonances of the 37 system to be mod-
eled, and the second sum extends over the modeled secondary resonances (or sub-
resonances) of each primary resonance. Each Bj(Q?) factor provides the Breit-
Wigner description of the kth primary resonance, while the j¥ factors each describe
the modeling of the ith secondary resonance of the kth primary resonance. The
relative strength of each secondary resonance is controlled by the corresponding
(¥ factor. The j¥ factors are termed “extended form factors” to distinguish them
from the more general, “reduced” form factors given above.

These two descriptions of the current are basically interchangeable, though
they represent different approaches. The following model construction will deal
with the latter approach (modeling the extended form factors), while modeling of

the reduced form factors will be addressed in Section 5.4.

5.3 Modeling the Extended Form Factors

The 7 is expected to decay predominantly through resonance structures whose
contributions to the hadronic current must thus be modeled in the form factor
descriptions given above. The dominant resonances are the axial vector resonances

(J¥” = 17%); however, pseudoscalar resonances (J© = 07) are also possible, though
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they are suppressed according to the partially conserved axial current hypothesis.
Here is described the modeling of these resonances and their substructure.

For the axial vector contribution to the current, the dominant primary reso-
nance is conventionally understood to be the lowest order axial vector meson, the
a1(1260); however contributions from radial excitations (i.e., the a}) could also
be included in the model. This analysis does not include considerations for the
a}. The possible pseudoscalar contributions are expected to be dominated by the
7'(1300). Using these primary resonances, one can rewrite the current in the form

of Equation 5.9 as follows:

!

N‘ll NT

sub sub
T, d2, @3) = Ba, (@) Y B + Bor(Q) > BT 3" (5.10)
=1 =1

Given this, the next challenges are as follows: (1) modeling must be specified
for B,, (Q?) (the Breit-Wigner description for the a; resonance) as well as ji'" (the
full descriptions of its N*. secondary resonances), (2) modeling must be specified
for By (Q?) (the Breit-Wigner description for the 7/ resonance) as well as j7* (the
full descriptions of its N™, secondary resonances), and (3) the unknown complex

coupling constants, 5 and BZT', must be found via fitting.

5.3.1 Modeling the 17 Resonance
For this analysis, the a; line shape is taken from the results of a previously
published CLEO analysis on 7 — 7£7%7% (7, /1) decays [60]. In that analysis,

a reasonable fit for the a; line shape was found from the [37]~ mass spectrum,
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though no correction was used for possible 0~ contributions. However, any effects
from pseudoscalar contributions to the [37]~ mass spectrum are expected to be be
miniscule, and the only hope for extracting information concerning pseudoscalar
resonances is in detecting subtle effects in the substructure of the decay. Thus, it
is reasonable for this analysis to assume the same @, line shape found in [60].

In summary, the previous analysis fit for parameters within the the a; Breit-

Wigner:

m2

B, (Q%) = - ’ o
1 (Q ) Q2 — mgl + imal F?(}t(Q2) ( )

where myg, is the nominal mass of the a; and I'f,(Q?) is the total mass-dependent
width. Note that the previous analysis originally assumed a Q?-dependent mass;
however, satisfactory fits were obtained using a constant mass.

The Q?-dependent behavior of the total a; width depends on all its possi-
ble channels, including a; — [37]~ and a; — K K. The previous analysis first
conducted a study of the a; substructure using a technique that was largely inde-
pendent of the full 37 mass spectrum. Using those results and attempting to make
reasonable assumptions concerning contributions from other channels, it produced

the following result for the total a; width:

Fgolt(cy) = E—gi [C??w(WWiTriﬁ (QQ) + Wit goz0 (Qz)) + C?(F((WK*K(QQ))] , (5.12)
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where
KO = 1.0704,
Cyr = 0.2384, (5.13)
Cxi = 4.7621Cs,,

and

0 Q? < M}

Wit rt s (QQ) = 9 XOA:I’(l + X1A + XZA%) M12 < Q2 < Mpﬂ

\ Z?:o PQ* otherwise,
Ay = Q- MY
M, = 3m,,

Mp?r = m,+ My,

(X0, X1,Xs) = (5.8090,—3.00980, 4.5792),

(Py, Py, Py, Ps, P,) = (—13.9140,27.6790, —13.3930, 3.1924, —0.10487),
(5.14)
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and
(
0 Q? < M?
Witroro (Q%) = VoA (1 + V1A, + Y2A2) M2 < Q2 < M0
S RiQ¥ otherwise,
A2 - QQ_M227
My = 2mgo + my,
Mmro = mp—i—mwo,
(Yo, Y1,Y2) = (6.2845,—-2.9595,4.3355),
(Ro, R1, Ry, R3, Ry) = (—15.4110, 32.0880, —17.6660, 4.9355, —0.37498),
(5.15)
and
0 Q* < M?
Wik (Q?) =
VZACSQA“ otherwise,
(5.16)

Ay = Q*— (mg~ + mK)Z,

A4 = Q2 — (mK* — mK)Q.

Note that s is chosen to ensure that 'y, (m,, ) = Ig.

5.3.2 Modeling the 17 Substructure
For this analysis, the decay of the a; is assumed to proceed through one of

seven possible sub-resonances (thus N% = 7). The choices and the modeling

0

reflect those used in [60] (though isospin rotated from the 7*7%7% mode in that

analysis to the all-charged mode considered here). The sub-resonances are denoted
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as follows:
ji* = s-wave amplitude for 17 — p(770)7 (s-wave prr),
j5t = s-wave amplitude for 17 — p(1450)m (s-wave p'T),
j3' = d-wave amplitude for 1T — p(770)x (d-wave pr),
jit = d-wave amplitude for 17 — p(1450)7 (d-wave p'r), (5.17)
j5' = p-wave amplitude for 1t — f,(1270)7 (p-wave for),

j§' = p-wave amplitude for 1t — f,(400 — 1200)7 (p-wave o),
j7* = p-wave amplitude for 1t — f,(1370)7 (p-wave for).

The amplitudes are then modeled as follows:

i = crwd pBl(s1) — paBL(s:) b
e = ol pBY(51) — paBY(5:) b
jon = OITW{ 11(Q1) B} (51) — a2 (QD2) Bl (52) }
gt = ClT”V{ a1,(QP1) B,y (51) — a2, (QP2) B (s2) },
g = el fu@e) - g (- m M) )] 560

+ |:p2V(Qp2) - % <Qu — hyy, (h;Q)> (PZPZ)] B}, (s2) },
jett = —ClT”V{ a1, By (s1) + a2, BY(s2) },
o = —cwd a1 B (51) + a2, Bl () b

(5.18)
where TH = g — Q*Q"/Q? as before in the nominal case (see Section 5.5 for

variations), the dot product notation (xy) = x%y, is used, and the Breit-Wigner
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functions in the above expressions are given by

2

m
B- _ X
x(5) m2 — s —imxI'%, (s) ’
2L+1
pYZ(S) mx
rs = Iy | ———— — 5.19
YZ,L(S) 0 <pYZ(m3()) \/ga ( )

\/(3 — (my +myz)?) (5 — (my — mz)2).

2y/s

The constant, C, could be absorbed into the 3" factors in Equation 5.10; however,

pYZ(S) =

to make these extended form factors consistent with typical, normalized equations

for the reduced form factors F; and F3, this constant is taken to be

2V/2

Cl:?)—fﬂ.,

(5.20)

where f; = 0.093 GeV is the pion decay constant. For the masses and widths of

the particles used in this analysis, see Table 5.1.

5.3.3 Modeling the 0~ Resonance

The structure of the 7' is defined in terms of its Breit-Wigner:

m2/

2\ s
Bel@) = G T i T () 521)

where m, is the nominal mass of the 7’ (see Table 5.1) and T'T,(Q?) is the total
mass-dependent width.

The @Q*-dependence of the 7' total width, I'T,(Q?), depends on all its possible
channels, though little is known about those channels. This analysis considers

contributions from the pm and o7 channels:

F;)r;r;(QQ) + aI‘g;,l(QZ)

th(Qz) = 1+a

, (5.22)
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where I'Y, | was defined earlier and « is arbitrarily taken to be 0.25. Although this
is a somewhat ad hoc construction, the uncertainty in the nominal width of the =’

(200-600 MeV) overshadows this definition of the full width as a significant source

of error.

5.3.4 Modeling the 0~ Substructure
The decay of the 7'(1300) is assumed to proceed through one of three sub-

resonances (thus N7, = 3). They are denoted as follow:

jT = p-wave amplitude for 17 — p(770)7 (p-wave pr),
j&' = p-wave amplitude for 1t — p(1450)7 (p-wave p'r), (5.23)
j¥ = s-wave amplitude for 17 — £3(400 — 1200)7 (s-wave o7).

Table 5.1

Masses and widths of particles used in this analysis.

Particle Nominal Mass Nominal Width

Reference

(X) (mx) (')
T 1.777 — [29]
aq 1.230 0.400 [29]
! 1.300 0.300 [29]
p(770) 0.774 0.149 [62]
p(1450) 1.370 0.386 [62]
f2(1270) 1.275 0.185 [29]
o 0.860 0.880 [63]

fo(1370) 1.186 0.350 [63]
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The amplitudes are then modeled as follows:

jfl” = C’;C;“ { (89 — 33)33(31) + (81 — 33)3,%(52) },

j;r,” = C’;;)“ { (52 — 83)321(51) + (51— 53)32'(52) }7 (5.24)
0

o= 9 BY(s1) + BY(s2) 3

2
mg

where the Breit-Wigner functions were defined earlier. The constant, C}, could be
absorbed into the ﬁz-”' factors in Equation 5.10; however, to make these extended
form factors consistent with typical, normalized equations for the reduced form

factor Fj, this constant is taken to be to be

igﬂ',pﬂ'gpﬂ'ﬂ'
Cy=——""—— 5.25
! m2, (5:25)

where g.,r = 5.8 and g, = 6.08. For the masses of the particles used in this

analysis, see Table 5.1.

5.4 Modeling the Reduced Form Factors

For completeness, the modeling of the reduced form factors is presented here.
It can be formulated given the modeling of the extended form factors above. In
accordance with the model-independent characterization of the hadronic current
given in Equations 5.7 and 5.8, the axial vector resonance, ay, is nominally modeled

in the F; and F, form factors; while the pseudoscalar 7’ resonance is modeled in
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F,. A nominal treatment of these form factors can then be written as follows:

NG

FI(Q2781782) — OlBal(Q2)Zﬂnggl(Q2781782)7
i=1

Fy(Q?% s1,50) = —Fi(Q? sq,51), (5.26)
NT‘_I

sub

F4(Q27 S1, 82) = O4B7T'(Q2)ZBZF,BZ?TI(Q27 S1, 82)7
i=1

where the sums extend over amplitudes from the a; and 7’ sub-resonances re-
spectively, and the B functions will be defined to model those sub-resonance
contributions in each form factor. Note that C; and C; were defined earlier to be
typical “normalization” factors for these form factor equations. Applying these to

Equation 5.7, the hadronic current becomes

N&L

sub

JH(ai, a2,q93) = Bal(QZ)ZﬁfIC1[VfB?1(Q2a31,82)—VZMBSI(QZaSz,SQ]

=1
!
™

sub

+ Br(Q)Y BT CWVEBE (Q2 51, 52),
=1

(5.27)
or, substituting for the V; functions:
N,
JHar, a2, q3) = Bal(Qz)ZﬁflcﬁTW[pluBfl(Qza51,52) — o B (Q%, 52, 51)]
i=1
Na,
+ Bu(Q) BT CLQMBT (Q?, 51, 52).
i=1
(5.28)

When this equation is compared to the hadronic current given in Equation 5.10,

one clearly finds that B* (Q?, sy, s5) and BF (Q?, s1, s2) must be defined such that
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the extended form factors can be rewritten as follows:

J;W = ClTuy[plllBgl(Q2781782)_pQVBzL'“(Q2’82’Sl)]’
(5.29)
i

O4QHBZ7'T’ (Q27 51, 82)-

Equating this format for each j;* to those modeled in Equation 5.18 is obviously
non-trivial for ¢ > 2. However, the difference between the two formats can be
shown to always involve factors (denoted B';") proportional to T#@Q, (which is
identically zero because of the form of 7). For a clearer picture of the equivalence
between the two j* formulations, one can include these (nominally irrelevant)

factors in the above equation:

j;w = O1T“”[p1u3?1 (QQ, 51, 52) - pzuBé“ (QQ, 52, 51) + QVBI ?1 (QQ, 51, 52)]7

T = CuQPBE(Q?, 51, 52).
(5.30)

In one of the model variations discussed in Section 5.5, those factors will no longer
vanish, and they will therefore be defined here for convenience.

a1

¢ and BF factors used to model the

It thus remains to construct the B, B’
reduced form factors such that Equation 5.30 is consistent with the models of the

extended form factors produced earlier. They are given as follows (as functions of



(Q% 51, 52)):

and

B
B3
Bs*
By

al
B;

a1
Bg

a1
Bz

(L) - L@t ot} gy

18 81

1(Q* —m2 + s2)(4m,
4 L@ = my + 55)(4m 2)3%2( )
52
—=B%(sy) + éBO(SZ)
377 37
2 4
—53?0(51) + 53?0(82);
Bl 1111 — Bl (211 — 0,
al 1
BY = % ((s2 — s3)B}(s1) — (s3 — s1)B)(s2))
al 1
B = —((s2=s3)By(s1) = (3~ s1)By(s2))
1((Q%*—m2 — 2s1)(4m, — s1)
rar ™ B2
B 5 3{ 3s, f2(81)
(Q* — m2 — 2s5)(4m, — s3)
+ 35 B?Q(SQ) )
1
By = 5(33 s1) + BY( 82))
! a1 1
B 7 = g (BfO S1 +Bf0 32))

156

(5.31)

(5.32)
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and
BY = — (52— 50)Bl(s1) + (51 — 52) Bl(s2)
By = Wiz, ((s2 = 53)By(s1) + (51— 53) By (s2)) , (5.33)
Bgl = %(32(81)4-32(82)).

5.5 Model Variations
In addition to the base model given above, the analysis considers two variations

in that model. Both of these variations focus on the pseudoscalar aspects of the

modeled hadronic current, which is a prominent point of interest for this analysis.
The first variation considers a direct change to the modeling of both the overall
width and the substructure of the 0~ resonance in accordance with certain theo-
retical treatments [64]. The overall 7" width is changed by modifying the pm and
om contribution as follows:

: 7 o(Q%) + al's, (@
[i(@%) = -2 2(Q )1 +O; 29 (5.34)

The changes to the sub-structure modeling are given here in terms of the B (Q?, s1, s2)

factors (which can in turn be used to generate the j " extended form factors via

Equation 5.30):
)B};(Sl) + 52(81 — 83)3;1;(52)) ,

, 1
Bf = —4 (81(82 — S3
P
, 1
By = me (s1(s2 = s3) Bl (1) + sa(s1 — 53) By (52)) » (5:35)
o
B = (B By
3 = m S1 0(51) + 52 0(52) .

g

For convenience, this modification will be termed model variation 1
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The second variation introduces scalar factors induced by off-mass shell con-
tributions from the axial vector resonances modeled in F; and F,. These contri-
butions arise when one considers, in the chiral limit, corrections due to the finite
quark masses (i.e., considering the generalized rather than the strict chiral limit
of vanishing quark masses) [58]. For the modeled hadronic current given earlier to
reduce to the generalized chiral limit, two changes must be made to the extended
form factor models: The format of 7" used in Equation 5.18 (or Equation 5.30)

must be changed as follows:

(ma, —m3) Q"Q"

(@ —m3) mg,

T = gt — (5.36)

An additional non-resonant contribution must also be added to the hadronic cur-
rent, controlled by a new fit parameter, #"°". This makes the final form of the

hadronic current as follows for this model:

!

Nl N7

sup a1 - r1a1 ail T C mzr
T @, s) = Bun(Q) Y 0737 + B (@) 3 BTG+ 0 o
1=1 =1 ™

(5.37)
where the j'* notations indicate the modification T"” — T"*" of their definitions
in Equations 5.18 and 5.30. Note that in the strict chiral limit where m, — 0, this
modification obviously reverts back to the original form.

Deriving the equivalent of these changes in the reduced form factor formal-
ism reveals two sources of induced scalar contributions. To demonstrate this, the

hadronic current above is first written in terms of the B;X functions (using Equa-
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tion 5.30):

J”((h,%,(la) =
N1

sub

C'1Ba1 (QQ) Z @qlTl " [ph/B?l (QQ, S1, 82) - p2u3?1 (QQ, 52, 31)
i=1

N (5.38)

sub

+ 1B, (Q) ) BT QB (Q%, 51, 52)
=1

’
™

sub » o . C 72T
b OB (@) D QBT @) + B e

To equate this with the hadronic current derived from the reduced form factors

(Equation 5.28) two induced scalar factors will be added to the latter:

JHQ1,q2,q3) =
N1

sub

OlBal (Q2)Zﬂ?1T‘W [pluBgl (Q27 S1, 52) - pZuBgl (Q27 52, 81) (539)
=1

!
™

sub

+ CiBo(Q)) _BrQ"BI (@ s1,5) + FiQ" + FiQ"
i=1
The differences between Equations 5.38 and 5.39 are thus accounted for in F§
and FJ. The F{ contribution is assigned to account for differences produced from
the model format itself. With the modification of 7" — T'* the previously

irrelevant B';" factors no longer vanish since

T/#VQV _ (1 . (mgl - m72r) Q2 > Q'u _ m?r(QQ - mgl)

(Q* —mZ) mg, mg, (Q* —m3)

Q" # 0. (5.40)

Those factors must thus be explicitly included in the reduced form factor models;

therefore, F§ is defined accordingly:

2012 .2 Nl
Fy=C, m;((%Q _”;;‘;;] B,, (@) Z BB Q2 51, 52)- (5.41)
a1 Q i=1
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The second scalar contribution comes explicitly from the T# — T'"" modification
and the addition of the non-resonance term. That is, the additional difference

between Equations 5.38 and 5.39 (not accounted for by F{) is found to be such

that:
FLQr =
el
CiBa (@)Y B2 [puBr Q2 51, 52) — pou B Q2 0, 0) | (T = T)
=1
non Olm72'l' 14
MR

(5.42)

It is then possible to show that F{§ simplifies to

2 2 2
Fg = G M @~ m,
TR TN

B, (Q°)

sub

N1
i=1

S B (Q s )| +
(5.43)

These two induced scalar contributions are added to the overall model of F}

such that
NI,
Fi(Q,51,50) = CuBw(Q*)Y BT B (Q%,51,5) + F§ + F§. (5.44)
=1

If this variation provides a more accurate model, then the induced scalar com-
ponents must be taken into account to gain a full understanding of the actual
pseudoscalar contributions. For convenience, this modification of the model will

be termed model variation 2.
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5.6 Final Form of the Differential Decay Rate

It is convenient to combine factors in the hadronic current as follows:

’
™

sub sub
JH(qu, @2, q3) = Ba, (Q7) Zﬁ‘“ e Be(Q1)Y BT
=t (5.45)

Nsub

= Zﬁz )

where the sum is now over both the a; and 7’ amplitudes while the 3; factors
incorporate all the 3% and 37 factors and the J functions incorporate all the

B, (Q%)j%* and B (Q?)j " functions. Note that in the case of model variation 2,
the sum would also include the non-resonance contribution introduced by that
model and its corresponding 3"

The differential decay rate can then be conveniently written as

GLV?2
dFTi—>[37r}i(l7r/Vr) = ™ ud{LuVJM(JV) }dPS
G2 %
= {Zﬁyﬁk X j”(jk)TLw/}dPS
- Zazgl( 7) x dPS™ (5.46)

i
where one now has a sum of factors (a;, which incorporate all combinations of
;B5) multiplied by functions (g;(Z), which incorporate all the corresponding com-
binations of F “d w7 HTNTL uvs and in which Z represents all kinematic variables
needed to describe the decay). The g; functions are derived from accepted theory
and the models used in the form factors, while the a; coefficients are derived from

the ten 3; complex coupling constants.
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6. FITTING METHOD

Everything needed to model the decay has been defined except for the ten
unknown complex coupling constants, 3; € {3, 37 ,}. This section focuses on
the unbinned maximum likelihood fit used to extract those parameters.

Note that a normalized distribution function can be defined from Equation 5.46

as follows:
dl' ., L. dPS®W
%(ﬂa) = Zaz‘gi(x)idf ; (6.1)
such that
L — CLZl.'fdPS(4) di
p(#]i) = g DAPS T/ AE (62)
> a; [ 9:(&)dPS™

Using this probability distribution function (pdf) a maximum likelihood fitting
method can be developed to extract the a; parameters to within an overall constant
(the basic method is developed in Section 6.3). One thus defines a; = f18f = 1
(or #; = 1), and the other parameters are defined with respect to a; (3;). Further,
Equation 6.2 depends on the true kinematic description of the decay (), and
one must provide a distribution function that depends on the measured kinematic
variables one has access to (Z'). Finally, the fit must be corrected for the presence

of background in the sample.
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6.1 Defining the True Kinematic Variables, 7

In the absence of radiative effects within the decay itself, one can give a com-
plete kinematic description of a given 7* — 7* 777 (1, /v;) decay in the lab frame
by specifying the 3-momentum of each pion (¢;) and the 3-momentum of the 7 (or
the v,;) along with the particle masses: m., m,, and m,,_ (assumed to be zero). The
7 momentum can be specified by its orientation with respect to the momentum of
the 37 system (627, ¢>™) along with its magnitude. Its magnitude can be calculated
from the energy of the 7, E,, which in turn can be derived from the beam energy
(Eveam) minus the energy lost in initial state radiation, E,. Further, using energy
and momentum conservation laws, the polar angle #2™ can be calculated from the
pion momenta and the energy of the 7. This leaves the following list of information
(along with knowledge of the particle masses) needed to give a complete kinematic
description of a given decay in the lab frame: & = (q1, 3, @3, Eveam Eryy 037).

Measurements supply the 3-momenta of the pions to within measurement error
and the beam energy gives the energy of the 7 assuming no radiative energy lose.
This leaves the following information that cannot be specified by the measurements,

yet which are needed to completely describe a given decay:

1. The azimuthal orientation of the 7 momentum with respect to the momentum

vector of the 37 system, ¢>7.

2. Effects on the true 7 energy due to initial state radiation (ISR).
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3. Corrections due to measurement uncertainties (e.g., acceptance, scattering,

detector resolution, error in Fle,m, and radiation effects other than ISR).

Again, in addition to correcting for the unmeasured information, the fit must

also correct for the presence of background in the data sample.

6.2 Correcting for Unmeasured Information
In general, given a set of variables that truly describe a decay, ¥, and the

set of measured variables, &' = (¢, 7%, q%, E.....), there is a probability distri-

beam
bution, p(Z’'|Z), which provides the probability of measuring Z’ given that the
decay was generated at Z. Note that the form of p depends on physical proper-
ties and limitations of the detector and not on the form of the differential decay
rate (i.e., it is independent of the fit parameters, 3;, and thus is independent of

a = (6167, 5155, ...020%, 8235, ...01057,)). Therefore, using Bayesian statistics one

can produce a differential decay rate in terms of the measured variables:

ar’ ., . audro
@0 = [ o @ (6.3)

That equation effectively integrates over the information that is not measure,
and p provides the distribution of the unmeasured information. In this analysis, p
consists of four separate factors, each of which can be calculated from Monte Carlo
studies and/or approximated measurement errors. First, the distribution of the
unmeasured ¢2™ (recall that this is the azimuthal orientation of the 7 with respect
to the 37 system) will not be uniform due to the 7-pair production dynamics. One

thus includes a probability distribution, Pys«(Z), to adjust for that effect. Note
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that Pys- depends on the direction of the 7 produced, which can be derived from
the the full kinematic description, #. Second, one must include a factor to describe
the probability distribution of the unmeasured E, (the energy of the possible ISR
photon), f(E,). Third, one includes an acceptance factor for the given measured
event, o(Z'). Finally, one must include the probability of finding the measured

momenta and beam energy given their generated values, o(Z’|Z). Thus, one finds

that
p(T']F) = a(Z") X Pyg= () x f(Ey) x o(T']), (6.4)
such that
@) = ald) [P @B D @z (65)

It should be noted that because Equation 6.5 concerns events that have been de-
tected and measured (at Z'), the acceptance is a function of the measured variables
alone (and thus has been taken out of the integration). In a maximum likelihood
fit, such a factor in the numerator of the probability distribution does not affect
the fit. It is, however, important in the normalization, which integrates over dz'.
For this analysis, the normalization was calculated using skimmed Monte Carlo
data, thus accounting for the acceptance.

It is useful to utilize the form of the differential decay rate from Equation 6.1

to rewrite Equation 6.3 as follows:

ar' ., o dPSW
G0 = S [ )
= ) wGi(&"), (6.6)
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where

, L dPS®
G(i") = [ o@D " (6.7

The proper distribution function can now be defined:

o dU(E|a) /i
PER = T (6.8)

> aiGi(T)
> ai [ Gi(@)di"

(6.9)

To calculate the integrals (one for each value of i) in Equation 6.7 a numeric
integration is performed using an average value method: for a given event measured

at Z’, a number of possible generated variables ¥ are randomly selected and used

dPs™
dz

to calculate a series of values for p(Z'|%)g;(%) . The average of this series and
the phase space volume over which they were selected are used to calculate the
integral. In some cases, a randomly selected set of possible generated variables, T,
is not kinematically allowed to be a 75 — 7777 (. /v;) event. The selection is
ignored, and if this is the case for all the random selections for a given event, the
event is thrown out as likely being background. That requirement removes just
over 3,000 events from the fit sample (roughly 2% of the original), leaving 145, 000
events in the fit.

This procedure provides a correction for the unmeasured information and leaves

—

one with a distribution function for the measured data given @ (p/(Z'|a)).
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6.3 Correcting for Background

Properly correcting for the presence of background events in the data sample
posed a significant challenge for this analysis. The large number of kinematic di-
mensions significant to the fit tends to prohibit the use of a binned background
subtraction method, and while the probability distribution function (pdf) for the
signal distribution is well understood, the variety of background types (see Ta-
ble 4.2) makes it difficult to include analytic functions in the fit that would model
the background in the given kinematic space. The analysis utilizes Monte Carlo
samples of the 7 background to subtract the effects of the background in the un-

binned maximum likelihood fit. The process is described here.

6.3.1 An Accepted Technique that Falls Short
If binning were acceptable, the distribution of the signal in the data could be
approximated by subtracting the background contributions on a bin-by-bin basis.

The number of signal events in the ith bin would then be approximated as follows:

VPR =Y, -, (6.10)

where Y; is the actual number of data events in the bin and ) is the approximated
number of background events in the bin found from a properly scaled background
sample. Given this approximated distribution of the signal in the data, one could
calculate the likelihood that it is described by the signal pdf (for a given set of

parameters, @) by using a standard binned likelihood, which will now be developed.
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The average number of signal events expected in the ith bin located at Z; and

with bin size A"z can be written as
pi = Ngp(Z;|ad) A"z, (6.11)

where N, is the total number of signal events expected in the data and the pdf
function, p(Z|@), is normalized. From Poisson statistics, one finds the probability
that Y;* events would be found in the ith bin:

s\YS —u?
s|,,s Hi)re

)

(6.12)

The likelihood that the binned distribution of signal events in the data is de-
scribed by the signal pdf is, then, proportional to the product of the above prob-

ability over all bins [65]:
Na s s
; (g) et
L H Vol

=1 4

: (6.13)

where Np is the number of bins. Taking the logarithm of this signal likelihood

(and then expanding the expression for y;) one finds

Na
mey = 3 (v m) - -y

=1
Na

= Y [y mip(@la)] + Y7 W(N,] + Y In[Am)
i=1

—N,p(Z;|a@) A"z — ln[Yis!]} (6.14)

Na

-y {y ln[p(fi|5)]} + N, In[N,] + N, In[A"z]
i=1

Na Na
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Note that the fourth term given in the final equation involves a numerical integral
of the (normalized) pdf. Its varying with respect to @ is expected to be insignif-
icant. Therefore all terms but the first contribute constant values to the signal
log-likelihood (independent of the parameters, @) and thus are irrelevant in a max-
imum log-likelihood fit. Note too that bins without signal events (where Y;® = 0)
do not contribute to the first term. Thus, the information contained in empty bins
does not produce a useful contribution to the signal log-likelihood. One can write

the simplified signal log-likelihood as

Na
In L'y = Y7 In[p(#|a)]. (6.15)
=1

As mentioned above, the number of signal events in a given bin is estimated us-
ing the data and a background sample as in Equation 6.10. One thus approximates

the signal log-likelihood as follows
Na
InL", = Z Y? In p(7;|@)
i=1
Na
= Y {Vilnp(#]a) — Y Inp(F]a)} . (6.16)
i=1

Interpreting Equation 6.16, the log-likelihood that the signal in the data is de-
scribed by the signal pdf involves a bin-by-bin contribution from the probability
that the signal pdf describes the entire distribution of the data (signal and back-
ground: Y;Inp(#;|@)) minus the part of that contribution that was erroneously
added due to the presence of background (as estimated from the background sam-

ple: V! Inp(&;|@)).
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This is an accepted binned background subtraction method; however, since it

requires binning, it doesn’t quite fit the need of this analysis as noted earlier.

6.3.2 Expanding that Technique to the Unbinned Case

To expand the above binned method to an unbinned method, one lets the bin
sizes in the technique become minute such that each bin contains no more than
one event (either from data or from the background sample). This is analogous to
the usual adaptation of a binned likelihood method to an unbinned method. In the
infinitesimal bin limit where N is the number of data events and N, is the number
of events in the background sample, the signal log-likelihood in Equation 6.16
involves N, bins in which ¥; = 1 and ) = 0; N, bins in which Y; =0 and Y? = 1;
and some other number of bins in which Y; = )’ = 0. As noted earlier, the empty
bins do not produce useful contributions to the overall likelihood. Applying this
to Equation 6.16 one finds that in the infinitesimal bin limit, the (now unbinned)

signal log-likelihood can be written as follows:
Ny Ny
In L= Inp(&ld) — Y Inp(a), (6.17)
i=1 i=1

where the summations are over all the events in the data set and all the events
in the background sample set such that Z; is the position of the ith event in each
respective set.

Again there is a clear interpretation. The first summation calculates the log-
likelihood that the signal distribution function describes the entire data distribu-

tion (including background). Obviously one does not want to maximize that log-
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likelihood because it erroneously includes contributions from background events
being described by the signal pdf. However, the second summation (subtracted
from the first) uses the given background sample to calculate the total result of
those erroneous contributions. Subtracting this from the first summation corrects
for the presence of background in the data, producing the signal log-likelihood to

be maximized.

6.3.3 Summary of Background Correction Method

A non-binning method is utilized for performing a maximum likelihood fit on
data while using a sample of background to correct for the presence of background
in the data. First one calculates the unbinned log-likelihood that the theoretical
pdf for the signal alone describes the distribution of the data (which contains both
signal and background). This log-likelihood is obviously erroneous because it has
assumed that the background can be described using the signal pdf. However,
using an acceptable distribution of background events, one can approximate the
erroneous contribution to the unbinned log-likelihood and subtract it. This leaves
the log of the likelihood that the signal alone in the data is described by the signal
distribution function (Equation 6.17). Maximizing that likelihood thus produces a
proper fit of the signal pdf to the signal information in the data. It is accomplished
without binning, and the background correction comes not from knowing the ana-
lytical background distribution function, but rather by obtaining and utilizing an

acceptable sample of background events from Monte Carlo.
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6.4 Goodness of Fit

The goodness of fit calculations reported by the analysis were generated using a
relatively standard technique: Consider a large group of data sets, each containing
N events distributed via p(#|d@), where @ was produced by a given fit. Let (In p(Z|a))
be the average log of the pdf expected over the phase-space, and {[AIn p(Z|a)]?)
be the expected variance of Inp(Z|d@). The central limit theorem implies that
as N — oo, the values of the log-likelihood calculated for each data set (InL;)
will be distributed as a Gaussian with mean (In £) = N(Inp(Z#|@)) and variance
[Aln £]? = N{[Alnp(Z|@)]?).

In practice, a relatively large, previously generated set of Monte Carlo events
is used to find (Inp(7|@)) and ([Alnp(Z|@)]?) by calculating weighted averages of
In p(7;|@) and [In p(Z;|@)]? over the set. The weights are computed given the known
distribution of the Monte Carlo set, w; = 1/p(Z;|dy) (in effect, re-weighing the set
to a “flat” distribution that can be used to calculate proper averages).

The maximum log-likelihood found for the given fit can then be compared to
the expected value given the variance. The difference can be expressed in terms
of the number of o separating the two log-likelihood values. This goodness of
fit method thus involves a comparison between the event-by-event log-likelihood
distribution of the data being fitted and that of a Monte Carlo sample re-weighed
to represent the fit results. To demonstrate this comparison, two plots are provided

below. Figure 6.1(a) displays the results from an acceptable fit with a reported

g.o.f. value of ~ 0.60 (using the method given above). Figure 6.1(b) shows the
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results from a poor fit with a reported g.o.f. value of ~ 9.0c0. The good agreement
between data and Monte Carlo shown in the first plot and the poor agreement in

the second plot attest to the g.o.f. values reported.

0.060 — T L e T 0.060 L e — T L e

0.050 — — 0.050 —

0.040 —

— 0.040 —

0.030 — 0.030 —

AN/N
!
AN/N

0.020 — — 0.020 —

0.010 — — 0.010 [~

0.000
30

0.000
60 30

In(L,) (arbitrary scale) In(L,) (arbitrary scale)

60

(a) (b)
Figure 6.1

Demonstrations of the goodness of fit method by comparing log-likelihood distri-
butions for data (represented by points) and Monte Carlo (represented by the solid
histograms). Figure (a) displays such results for a fit with g.o.f. ~ 0.6, while (b)
displays such results for a poor fit with g.o.f. ~ 9.00. The fits used for these plots
were (a) the nominal fit to the data and (b) a fit without isoscalar resonances.
Both fits are discussed below.

This method of deriving goodness of fit information is mainly limited by Monte
Carlo statistics in conjunction with the accuracy with which the re-weighing of the
Monte Carlo represents the actual distribution suggested by the given fit. The
results are useful for ruling out fit results at, for examples, 90% (g.o.f. > 1.650)

and 95% (g.o.f. > 2.00) confidence levels.
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7. MONTE CARLO TESTS OF THE FIT

The fitting method was tested using full Monte Carlo data, including CLEO
event reconstruction and background data processed by the skimming code. Two
separate sets of Monte Carlo were used in the tests. The first was produced
using the nominal model with (; parameters motivated by the results of the
7 — 75707% (7, /v,) substructure fit presented in [60]. However, a small pseu-
doscalar contribution has also been included for this test fit. The results of this
test are shown in Table 7.1. Parameters returned by the fit agree with the ex-
pected parameters within reasonable errors. The goodness of fit test for this fit
indicated that the maximum log-likelihood was within 0.20 of the expected value.
Also shown are the significances of each sub-resonance found by evaluating the
fit with that sub-resonance removed. Each sub-resonance seems to be reasonably
significant to the fit, as expected.

The second test fit presented here was performed on Monte Carlo produced us-
ing the nominal model with (3; parameters motivated by the results of the real data

fit presented below. Again, the fit produced results consistent with the generating

parameters within the given statistical errors. The maximum log-likelihood found
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by the fit was within 0.60 of the expected, indicating a suitable goodness of fit;

and again each sub-resonance seemed to be reasonably significant to the fit.

Table 7.1

Results of a first test fit to Monte Carlo data.

resonance signif. fit expected fit error

RG; : 1 — —
a; — pw s-wave —

306; - 0 — —

RB;: -0.11840.026 -0.120 0.08c0
ay — p'mr s-wave 2.T0

I6; ¢ -0.027£0.023  0.004 -1.350

RB;: 0.3524+0.029  0.330 0.760
a1 — pr  d-wave  5.7To

S6; 0 -0.133+0.045  -0.168 0.78c0

RG; . -0.162+0.141 -0.082 -0.570
ap — p'wr d-wave  3.60

36 ;0 0.864+0.103  0.866 -0.020

RB; - -0.057+0.073 -0.133 1.040
a1 — fomr  p-wave 2.40

S6; ;0 0.645+0.062  0.697 -0.840

RB;: 1.5514+0.052  1.575 -0.460
a1 — om  p-wave  7.80

G0 1.440+0.055  1.389 0.930

RB;: -0.055+0.044 -0.097 0.950
a1 — for  p-wave  2.4o0

360 -0.733+£0.038  -0.764 0.820

RB;: 0.013+£0.002  0.012 0.500
7 — pr  p-wave 2.4o

I6; : -0.002+0.001  0.000 -2.000

RB;: -0.0104+0.008 -0.002 -1.000
o —pt p-wave 2.60

6, : -0.006+0.010  0.000 -0.600

RB;: 0.0084+0.003 0.010 -0.670
7 —>omr  s-wave 2.50

6« 0.001£0.002  0.000 0.500




Table 7.2

Results of second test fit to Monte Carlo data

resonance signif. fit expected fit error

RG; 1 — —
a; — pT s-wave —

S0 0 — —

RG; - 0.041+0.016  0.051 -0.620
ay — p'mr s-wave 190

60 -0.221+0.020  -0.248 1.350

RB;: 0.6244+0.019  0.608 0.840
a; — pw  d-wave  2.50

360 0.310£0.033  0.354 -1.330

RG; : -1.674+0.092 -1.598 -0.830
ay — p'mr d-wave 280

S6; 0 -1.336+0.099 -1.213 -1.240

RB;: -0.0544+0.074 -0.118 0.860
a1 — fomr  p-wave 2.60

G0 1.057+0.082  0.961 1.170

RB; . 2.077+0.095 1.986 0.960
ap = omr  p-wave 06.70

G0 2.8024+0.098  2.700 1.040

RB; - -0.096+0.059 -0.041 -0.930
a1 — for p-wave 220

$6; 0 -1.2044+0.057 -1.150 -0.950

RB;: 0.003+0.001  0.001 2.000
7 —pr  pwave 190

S6; : -0.002+0.001  -0.002 0.000

RB; - -0.013+0.007 -0.005 -1.140
o —pt  pwave 2lo

G0 -0.012+0.006 -0.014 0.330

RB; -  -0.003+0.002 -0.005 1.000
7 —or  s-wave 2.00

I6; : -0.0104+0.002  -0.008 -1.000
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These Monte Carlo tests signify that the fitting method can return acceptable

results, reasonably describing the fit data as expected.
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8. FIT RESULTS AND ANALYSIS

The results of fits performed on the 145,000 data events are presented here

along with a discussion of the systematic errors reported.

8.1 Presentation of Results

Table 8.1 summarizes the results of the fit to the nominal model described
above. The maximum log-likelihood measured in the fit was 6,011,214, while
Monte Carlo studies yield an expected value of 6,011,945 4+ 1,260. The differ-
ence of 0.60 indicates an acceptable goodness of fit. Also shown for each am-
plitude is its significance, found by repeating the fit with that amplitude ex-
cluded, and its background fraction, found from a numerical integration of the
full 7% — 7757 ¥ (7, /v,) differential decay rate.

The results are graphically presented in four figures. Figure 8.1 compares the
data to the fitted distributions of Q?, each of the Dalitz plot variables (s; and
S2), B3, 7, cos, and cosy (see Appendix G for a description of the angular vari-
ables). Figure 8.2 compares the data to the fitted distributions of s; in bins of Q?,
while Figure 8.3 displays the same plots for s,. Finally, Figure 8.4 shows the two

dimensional distributions of the Dalitz plot variables within bins of Q2.
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Display of nominal fit results in projections of Q?, sy, s9, 3, 7, cos 6, and cos ) (see
Appendix G). The points represent the data, while the solid histograms show the

fit results, and the shaded regions display the background distributions.



182

1600\\\\‘\\\\‘\\\\‘\\\\‘\\\ 3600,\\\\\\\\‘\\\\‘\\\\‘\\\,
- 0.36<Q%<0.81 1 i 0.81<Q%<1.00
1000 | 2500
0 e s 0
5000 |- 1.00<Q2<1.21 N 5000 1.21<Q2<1.44 _
Z .
~~
=z 0 e e e e e o 0 e e e S
< i . 1.44<Q’<1.69 | | 1.69<Q?<1.96
2500 * 1000 - _
L B R e e | [ R e e L I A
1 T 2.25<Q%<3.24 }
250 N I +
L 100
(b.\\ %.O\\
s, (GeV?)
1
Figure 8.2

Display of nominal fit results in distributions of s, for various bins of @?. The
points represent the data, the solid histograms indicate the fit results, and the
shaded regions display the background distributions.
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Display of nominal fit results in distributions of s, for various bins of Q?. The
points represent the data, the solid histograms indicate the fit results, and the
shaded regions display the background distributions.
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Display of nominal fit results on two dimensional distributions of s; and sy in
different ? bins. For each bin, data distributions are shown on the left while
distributions generated from the fit are displayed on the right.
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Table 8.2 presence the results of a fit using model variation 1. A reasonable
goodness of fit was also found for this model, 0.7¢0. Finally, results for a fit using
model variation 2 are given in Table 8.3. The difference between the expected and
measured log-likelihood for this fit was found to be 0.80, indicating an acceptable

goodness of fit for this model as well.

8.2 Systematic Errors
The systematic errors presented in the analysis results arise from the follow-

ing sources: There is uncertainty involved in estimating the distribution of the

measured data from the theoretical distribution: Zg: (@) = [ p(2')2)% (F]@)dz.
Errors from this source include both the Monte Carlo statistics used in performing
the numerical integration as well as uncertainties in various detector resolutions
(used to approximate p(#'|Z)). Uncertainty also exists in the background correc-
tion from both background Monte Carlo statistics and the background fraction
estimations. Finally, the estimation of the normalization involves uncertainties
from both Monte Carlo statistics and acceptance (recall from Section 6.2 that
acceptance only affects the fit via the normalization estimation). The effects of
acceptance are due to inaccuracies in how well the skimming of the Monte Carlo
events used in the normalization represents the skimming of data events. Stud-
ies on the skim results indicate that such acceptance effects would be minor, and

uncertainties due to Monte Carlo statistics are expected to strongly dominate the

normalization error.
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ar’
dz’

Statistical errors associated with the measurement of 2= (Z'|@) are estimated
from seven separate fits, each using a separate set of statistics to calculate the
numerical integral and each assuming different detector resolutions (varied within
reasonable limits). Errors due to background correction factors are derived from
five separate fits using different background statistics and varying the background
fraction within reasonable limits. Finally, errors caused by uncertainty in the
normalization are estimated by dividing the normalization Monte Carlo into seven
separate sets, performing a fit for each set and taking the variation in the results
to calculate the associated statistical errors. Results from these systematic error
studies are given in Tables 8.4 and 8.5.

In general, none of these sources considered tends to dominate the systematic
error contributions in all cases. This is not unexpected given that Monte Carlo
statistics should play a large role in these errors, and each of the given sources
includes errors from some form of statistics used.

Note that the systematic errors on the fit parameters do not include consid-
erations for possible, diverse variations in model assumptions. The parameters
themselves are only meaningful in the context of the model to which they are asso-
ciated. Different models can produce significantly different fit parameters, though
this has no bearing on the accuracy of the parameters resulting from the fit in

this analysis. The results of this analysis are inherently model dependent, and one

must judge the use of various models depending on each’s ability to describe the
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Systematic errors for the fit to the nominal model (continued on next table).

Resonance Element ‘ég: (#'|ld) Back- Normal- Total
Calc. ground ization

ARG;: +0.012  £0.008 £0.006 +0.02

ap — p'm s-wave ASS;: 4+0.008 +£0.013 40.013 +0.02

AB frac: +0.105 +0.157 +0.164 +0.25

ARG;: £0.005  £0.015 £0.006 +0.02

a1 — pr d-wave ASS;: +0.018  £0.026 +0.009 +0.03

AB frac: +0.047  £0.089 +0.034 +0.11

ARB;: +0.051  £0.176  +0.069 +0.20

ap — p'wr d-wave ASG;: +0.041  £0.049 +0.045 +0.08

AB frac: +0.130  £0.395 £0.169 +0.45

ARG;: +0.023 +0.041  +0.034 +0.06

a; — fomr  p-wave ASS;: +0.018  £0.011  +0.046 +0.05

AB frac: +0.025  £0.016 +0.065 +0.07

ARB;: +0.015  £0.095 +0.019 +0.10

a1 — o p-wave ASS;: +0.017  £0.092 £0.040 +0.10

AB frac: +0.470  £2.696 +0.988 +2.91

ARS;: +0.023  £0.041 +0.029 +0.05

a; — for  p-wave ASS;: +0.013  £0.029  +0.007 +0.03

AB frac: 4+0.250  £0.591 40.140 +0.66

data. Therefore systematic errors due to possible variations in the model used are

not applicable to the results reported herein.
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Continuation of systematic errors for the fit to the nominal model.

Resonance Element zlm:: (#'|ld)  Back-  Normal- Total
Calc. ground  ization

ARS;: +0.0012  +0.0001 +0.0012 +0.002

' — pr  p-wave ASS;: +0.0015 +£0.0001 +0.0009 £0.002

AB frac: 4+0.0213  £0.0021 +0.0136 +0.025

ARB;: +0.0070  £0.0010 +0.0073 +0.010

" = p't p-wave ASG;: +0.0039  4+0.0004 +40.0010 +0.004

AB frac: +0.0130  £0.0016 +0.0083 +0.015

ARG;: +0.0012  £0.0002 +0.0010 £0.002

= or  s-wave ASS;: 4+0.0009 £0.0001 +0.0005 +0.001

AB frac: +0.0278  +0.0031  +0.0202 +0.035

188
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9. DISCUSSION

Fit results produced by the analysis generally support the following points:

e The dominant amplitude in the decay is found to be the s-wave a; — pm,
with a branching fraction of around 70% to 75%, depending on the model

used.

e Of the 1% sub-resonances, all but the p'm s-wave are reasonably significant

in the fits.

e Also prevalent in the 1% contributions to the 7* — 7#*7*n¥ (v, /v,) width
is the o isoscalar meson, with a branching fraction between 40% and 50%
depending on the model used. Its presence in the nominal fit (with 6.00

significance) cannot be ignored (see Section 9.2).

e The other two isoscalar mesons (fy and fy(1370)) modeled in the a; decay
are well warranted in the fits (given their significance measurements); how-
ever, only the f;(1730) contributes significantly to the 7+ — 7*757F (7, /v;)
width, with a branching fraction of ~ 11%. See Section 9.2 for further dis-

cussion of the isoscalar contributions.
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e When taken as a whole (thus accounting for interferences between the am-
plitudes), the isoscalar resonances contribute around 15-17% to the overall

7+ — 7% 7% (v, /v;) width, depending on the model used.

e The statistical significances of the 0~ sub-resonances are generally small in
all cases and in all fits, usually ruling out their relevance to a given fit at
the 90% confidence level (significance < 1.650). However, the overall effects
of including these sub-resonances are generally consistent with expectations.

See Section 9.4 for further discussion of the pseudoscalar contributions.

The following sections elaborate on various implications of the analysis.

9.1 Model Comparisons

As expected, results from fits to the nominal model and those from model vari-
ation 1 are largely in agreement with one another. These two models differ only
in their treatment of the pseudoscalar 7’ and its decay, and because contributions
from its sub-resonances are small, differences between the two fits were expected to
be minimal. The fits produced only slightly different results for the pseudoscalar
sub-resonances. Both find contributions from pr and p'm p-wave largely consistent
with zero, while contributions from om s-wave are found to be only slightly higher
in the model variation 1 fit than found in the nominal fit (a somewhat insignif-
icant difference, given the fit errors). See Section 9.4 for a discussion of these

contributions.
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Model variation 2 produces similar results for most of the 17 §; factors, and
though differences exist outside of the given error range in some cases, such dif-
ferences themselves are not necessarily of physical importance given that each
model explicitly treats the amplitudes differently. Comparisons of the calculated
branching fractions, however, are more significant, indicating, to a degree, phys-
ically different predictions. In most cases, error bars on the predicted branching
fractions would overlap with those produced by the other models, and the general
trends are largely the same, as noted previously: The s-wave a; — pm dominates
with significant contributions from a; — o7 and fym p-wave. When isoscalar res-
onances are combined as one contribution, their combined branching fraction is
found to be about 17% for the nominal case and about 15% for model variation 2.
This model also predicts consistently larger effects from pseudoscalar contributions
as discussed in Section 9.4. The non-resonance contribution in this model is also
discussed in that section.

Comparisons between the model fits in a variety of projection plots were ex-
amined, and differences between the models were largely minimal. This is not
an unexpected result, given that a reasonably acceptable fit was found with each
model. Overall, there are no strong indications that any one model produces a

definitively better fit than the others.
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9.2 Significance of Isoscalar Resonances

The isoscalar meson sub-resonances of the a; included in this analysis (o, fo,
and fy(1370)) play a large role in the fits for each model considered. A fit to the
nominal model was performed without these amplitudes present to demonstrate
their importance. The goodness of fit test for this fit yielded a result of ~ 9o,
attesting to its poor quality and thus the significance of the isoscalar resonances.
Two figures have been included below to demonstrate where the need for these
isoscalar amplitudes is most prevalent: Figures 9.1 and 9.2 display the results of
this fit on distributions of s; and s, (respectively) in bins of Q.

The isoscalar resonances seem to play an important role for data with Q? >
2.25 GeV where there is broadening in the distribution of s;, and for data with
(Q* < 1.44 GeV as seen in the distribution of s3. The formar region tends to attest
to the significance of the f, and fy sub-resonances, while the latter attests to the

significance of the ¢ sub-resonance.

9.3 Notes on Possible a| Hypothesis

In the flux-tube-breaking model presented in references [66] and [67], one finds
that the decay of a) to p'm prefers to precede through d-wave rather than s-wave,
and that decay of the a} to p'm is preferred to pm. In all the preceding fits, the
a; — p'm mode was more prominent in d-wave than in s-wave; and in the nominal
model as well as model variation 1, the p’m channel has a slightly higher branching

fraction than the pr in the the d-wave mode. Further, the need for enhancement
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Figure 9.1

Display of s; distributions in various bins of ()? resulting from fitting without
isoscalar resonances. The points represent the data, the solid histograms indicate
the fit results, and the shaded regions display the background distributions.
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Display of s, distributions in various bins of ()? resulting from fitting without
isoscalar resonances. The points represent the data, the solid histograms indicate
the fit results, and the shaded regions display the background distributions.
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from the fom and o7 in the upper Q? bins is also consistent with an @ hypothesis.

This possibility is left for future potential analysis.

9.4 Significance of Pseudoscalar Resonances

Of particular interest for this analysis was the inclusion of 0~ pseudoscalar res-
onances through the 7’. In each model fit, the significance of these amplitudes can
be ruled out if one requires a 90% confidence (significance < 1.650). A fit per-
formed using the nominal model without any pseudoscalar contribution suggested
an overall significance of, at most, ~ 1.4¢, indicating a moderately acceptable fit
with no pseudoscalar contributions.

However, greater pseudoscalar significance is found in the fit to model vari-
ation two. Without the presence of pseudoscalar amplitudes, this fit returns a
significance of ~ 1.80. Model variation 2 also indicates a slightly significant non-
resonance contribution (which induces a scalar effect), with a branching fraction
of around 0.9%.

Given the results of this fit, one can place the following 90% confidence level

limits on the absolute branching fractions of the pseudoscalar modes:

B(r — v, — prv, — 31v,) < 4.3 x 1077,

nominal model: ¢ B(r — x'v, — v, — 37v,) < 52x 1075, (9.1)

Bt — 7'v, = omv, — 31v,) < 2.1 x 1074,
\
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B(r — v, = prv; — 31v,) < 6.3x 1077,
model variation 1: ¢ B(r — 7'y, — p'rv, — 31v,) < 2.2 x 1075, (9.2)

B(tr — 7'v, = omv, — 31v;) < 3.3 x 1074,

B(t — 7'v, — prv, — 31v,) < 2.8 x 1074,
Bt — 7'v, = p'rv, — 3nv,) < 2.9 x 1074,
model variation 2: < (9.3)

B(r — 7'v, = onv, — 31v,) < 1.0 x 1073,

B(t — 37v, non-resonant) < 1.1x1073

\

As shown, model variation 2 suggests significantly larger pseudoscalar contri-
butions. The non-resonance contribution is also reasonably noticeable, and though
it is not overly significant in the fit, the branching fraction of (0.87+0.144+0.18)%
is not consistent with zero. It should also be noted that, though the fitted coupling
constant for the non-resonance contribution is significantly higher than others (see
Table 8.3), this could be due to a missing scale factor in the fit and does not affect
the branching fraction calculation or errors.

It is instructional to investigate where the pseudoscalar amplitudes contribute
what small significance they seem to have. Any small scalar contribution expected
in the nominal fit would not produce noticeable effects on either the 37% mass
spectrum, the s;, or the sy distributions. Any possible branching ratio from the
square of the pseudoscalar amplitudes is also expected to be insignificant. However,

as discussed in [57], more noticeable effects caused by interference terms involving
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0~ amplitudes may be detectable from their effects on the distribution of y (defined
in Appendix G). The details of that distribution are discussed in Appendix H.
For the nominal fit, one finds that the effects of including the pseudoscalar
amplitudes are statistically unnoticeable for the distributions of Q?, s, so, [,
cos f, and cos v, improving the confidence level comparisons between the data and
fit by a relative 1 to 4%. However, in the distribution of v, the confidence level is
improved by a relative 30% or so. Although statistically insignificant in the overall
fit, the improvements caused by adding 0~ amplitudes are found where they are

expected, indicating that while statistically small, the improvements are likely real.

9.5 Comparisons to Other Results

A variety of other collaborations have produced previous analyses of the 7+ —
rtrtr T (v, /v,) decay, including DELCO [68], Mark II [69], MAC [70], ARGUS
[71-73], OPAL [74], and DELPHI [75]. Their reports generally involve various
areas of study possible from 75 — 7777 (1, /v;) decays including the a; mass
and width parameters (assuming model conditions), the neutrino helicity, and the
Michel parameters, ¢ and 6. However, since the analysis being reported on here
(referred to in this section as the “current analysis”) has focused specifically on the
carefully modeled substructure in the decay, previous results on these other areas
of study are not reported on here. For a more complete comparison of previous

results, see Reference [76].
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These analyses generally focus on the model of Kithn and Santamaria presented
in [52] (hereafter referred to as the KS model) and the model presented in [51] by
Isgur, Morningstar, and Reader (hereafter referred to as the IMR model). The
KS model includes resonances for a; — pm and a small admixture of a; — p',
both in what approximately coincides with s-wave amplitudes. The IMR model
includes s-wave as well as d-wave a; — pm, and unlike KS, it included the “turn
on” effects of K*K in the a; Breit-Wigner (see Section 5.3.1). IMR also includes
a small amount of 7" — pr.

Using approximately 7,500 7% — 7*7%7F (v, /v,) decays, ARGUS [72], among
other things, studied the Q* and Dalitz plot distributions to extract the ratio of
D/S used in the IMR model. They obtained a value of D/S = —0.11 £ 0.02,
compared with the model prediction of D/S = —0.15 [51]. However, due to model
differences, there is no simple comparison to the results presented in the current
analysis. A later ARGUS analysis [73] focused mainly on the Michel parameters
using approximately 3,300 (7%)(7F) — (ITv#)([37%]7) events (where [ denotes a
lepton). Both KS and IMR models proved inconsistent with the data in that anal-
ysis, though the goodness of fit was improved to an acceptable level by including
the amplitudes listed in Table 9.1. To produce this result, the couplings used had
to be made Q? dependent, and again, it is difficult to make direct comparisons
between their results and results presented here. However, general conclusions
can be drawn from these ARGUS analyses that match favorably with those of the

current analysis:
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e The structure in 7% — 7777 (7, /v;) decays is more complex than either

the KS or IMR models can account for.

e It seems important to include some degree of isoscalars (f, and fy) in the

hadronic current.

Table 9.1

Amplitudes used by ARGUS [73]. Their fit significance and relative branching
fraction are also given. Coupling constants for these amplitudes were made Q?
dependent to get an acceptable fit.

Resonance Signif. B Fraction (%)

ay — pm s-wave — 58.2%
a1 — pm d-wave 6.40 7.2%
ay, — pw Emulate Isgur  3.90 5.8%
ar — fo(975)/f0(1400)7 p-wave 2.10

ar — fo(1270)7 p-wave 4.20 3.6%
p— wr p-wave 2.40 0.6%
7' — fo(1400)7 p-wave 2.50 0.3%
' — pm s-wave 2.80 0.7%

5

In reference [74], OPAL presented a study using approximately 6,300 7
ntrEa¥ (v, /v;) decays. They performed both a model-dependent analysis (using

the KS and IMR models) and a model-independent analysis (using structure func-

tions as presented in [64]). Their model-independent analysis placed a limit on the
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non-axial vector contributions in 7* — 77t 7F (v, /v,):
FoonAv/Tiotal < 261%  at 95% C.L. (9.4)

Their model-dependent analysis assumed pseudoscalar contributions through 7" —

pr and place the following limit:
(1 — 7'y = 37) /T ota1 < 0.85% at 95% C.L. (9.5)

A display of their fit to the s; distribution is shown in Figure 9.3. The fit is shown
to be poorer in the low s; region and there seems to be unmatched structure in
the upper mass region as well. These results again seem indicative of the need for
isoscalar resonances, though OPAL’s analysis did not explore that possibility.

In each of these analyses, poor agreement between the data and both the KS
and IMR models indicate that resonances beyond prm are needed to describe the
hadronic system in 7% — [37]* (i, /v,) decays.

A separate report from the CLEO collaboration [60] studied the structure in
% — 7577%(w, /v,) decays. In it, fits to the three pion mass spectrum were
preformed using approximately 30,800 events in which the “tag” side was identified
as leptonic or hadronic. However, substructure fits were performed using only the
somewhat more reliable lepton tagged events (approximately 14,600 decays). The
a; sub-resonances used in the current analysis were motivated by those used in [60]
(once they were isospin rotated to the all charged mode). The significances and

branching fractions found in that analysis are given in Table 9.2. Though there are

differences between those results and the all charged mode reported here, there are
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An OPAL result showing a Dalits plot projection of their background- and
efficiency-corrected data (points with error bars), a fit result to the KS model
(solid line), and a fit result to the IMR model (dashed line). The dotted line shows
the polynomial background contribution for the IMR model.

some similar trends. The a; — p7 s-wave accounts for about 70% of the branching
fraction, consistent with the current results, and there is significant evidence for
isoscalar resonances reported (when taken as a whole, they contributed ~ 20%
compared to ~ 17% in the current analysis). The previous report also placed a

limit on pseudoscalar components at a 90% confidence level:

B(r — 7'v, — prv, — 3nv,) < 1.0 x 1074
(9.6)
B(r — 7'v, = onv, — 31v,) < 1.9x 1074
It is instructional to compare the results reported in the current analysis with

those from [60] (which will be called the “previous” results for convenience) by

looking at Q?, s, and s, projections compared to data. To that end, Figure 9.4
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Table 9.2

Amplitudes used by an earlier CLEO study of 7* — 757%7% (7, /v,) decays [60].
Their reported significance and relative branching fractions are also listed.

Resonance Signif. B Fraction (%)

ap — pm  S-wave — 68.11

ap — p'nm s-wave l.4do 0.30+0.6440.17
a;, — pm d-wave  5.00 0.36+0.171+0.06
a, — p'nm  d-wave 3.lo 0.4340.2840.06
a1 — for p-wave 4.20 0.14+0.06+0.02
a; = om p-wave 8.20  16.18+£3.86+1.28
a1 — for p-wave 5.do 4.2942.2940.73

displays four plots. The first two plots present comparisons in * and s;, where
there is considerable agreement between the data, the current fit result, and the
previous result. The third plot shows the distribution in s, where the current
fit result varies from the previous result and better matches the data. The final
plot is a combination of both s; and s, (two entries for each event) and represents
distributions of unordered Dalitz plot variables, which were used for plots in [60].
The differences between the current fit and the previous result are less pronounced
in that plot than in the distribution of s, (the smaller of the two when the variables
are ordered for each event).

The differences between the current results and the previous result clearly reside
in the distribution of s,. A closer examination of that plot and the distribution

of background in it indicates that a larger background fraction might bring the
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Plots comparing results from [60] adapted to the all charged mode (dashed his-
togram) to current results (solid histogram) and data (points). Shown are distri-
butions in Q?, sy, s2, and a combination of s; and sy (two entries per event).
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previous result into better agreement with the data witout the need for the changes
indicated by the current fit; however, such a change would disturb the agreement
found in the distributions of Q% and s;. It is also possible that the background
distribution (taken from Monte Carlo) is significantly erroneous in s, but well
represented in the other two variables due to improper modeling of the background.
This possibility is left for future analysis.

To summarize the comparisons made here to previous results, the current anal-
ysis continues to mount evidence for isoscalar in the [37%]~ system of 7% —
ntrEa¥ (v, /v,) decays. The current analysis also places smaller model-dependent
limits on the pseudoscalar contributions. While there is some disagreement

+

between the current results and those extracted from a similar fit to 7+ —

7Etm07% (v, /v,) decays, the extent to which these are from differences in the two

modes, results of poor background modeling, or come from some other source is

yet to be determined.

9.6 Implications on the Light Quark Masses

“1¥ (v, /v,) decays

The connection between the scalar contribution in 7+ — 7%7
and the average of the up and down quark running masses [m = (m, + my)/2] is
discussed in Appendix I. Here, the results of this analysis are applied to the given
equations to determine a lower limit on m (i (p?) > m'(u?)).

The method presented in Appendix I involves a squared cutoff mass, sq, taken to

be within a typical range of 2 GeV? < sy < m?2, and the ranges of 72 reported here
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include the effects due to the variance in sy. Results from the scalar contributions
in the three models suggest the following m’ values at u = 1 GeV (note that the

third error indicates the systematic error due to the spread in sg):

nominal model: /(1 GeV?) = 13.342.6+3.5+0.4 MeV,
model variation 1: /(1 GeV?) = 17.6£2.9+3.140.7 MeV, (9.7)

model variation 2: /(1 GeV?) = 2544+4.9+58+0.9 MeV.

The results were also used to extract 90% confidence level lower limits on 1,

given as follows:

nominal model: 7m(1 GeV?) > 8.3 MeV,
model variation 1: (1 GeV?) > 12.5 MeV, (9.8)
model variation 2: m(1 GeV?) > 14.2 MeV.

Without the information gathered from the [37]~ mode, the well-understood
one-pion decay mode of the 7 places a lower limit on (1 GeV?) of around (4 —
5) MeV [57]. The additional [37]~ contribution indicated by the current analysis
is thus on the same order as or higher than the one-pion contribution. While the
resulting limits may be larger than expected (see Appendix I), they do lie close
to nominal expectations [4 MeV < (1 GeV?) < 10 MeV]. Further, as noted
earlier, the 7* — 7En%7T (1, /v,) substructure fit performs reasonably without
the pseudoscalar modes, and thus it cannot statistically attest to the significance
of the [37]~ additions to the 7 limit. Overall, the results indicate that the level

of pseudoscalar suggested by this analysis is not unreasonable.
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10. CONCLUSIONS

This analysis has applied a model-dependent fit that reasonably describes the
hadronic substructure in 7+ — 75757 ¥ (7, /1) decays. It utilized 145,000 events
skimmed from the sample of 4.3 x 10% 7 pairs present in the CLEO II data set.
The nominal model contained both axial vector components (introduced through
the a,(1260) primary resonance and its sub-resonances) as well as pseudoscalar
contributions (via the 7'(1300) and its sub-resonances). Two model variations
were also considered that concerned changes to the pseudoscalar contributions, a
chief interest in this analysis. The first introduced changes to the modeling of the
7' and its sub-resonances, while the second variation involved corrections due to
the finite quark masses in the chiral limit—inducing pseudoscalar-like terms from
the axial vector components and introducing a non-resonant term.

An unbinned maximum likelihood fit was used to extract the complex coupling
constants that control the strength of each sub-resonance in the hadronic current.
All models used tended to describe the data well, and none of the fits indicated a
clearly preferable model.

As expected, the a; — pm s-wave channel dominated the decay with a contri-

bution of around 70 — 75% to the overall 7+ — 7*7*7F (v, /v, ) width, depending



207

on the model used. Though a non-zero but statistically small contribution was
found for s-wave a; — p'm, statistically significant contributions were found in
the a; substructure for d-wave pm and p'm amplitudes as well as amplitudes in-
volving isoscalars, f>(1270)7, o, and fo(1270)7. The isoscalar contributions were
especially prominent, as were interferences involving those terms. The om mode
was particularly significant in all the fits, and though it contributed ~ 40 — 50%
to the branching fraction independently, when combined with the isoscalars as a
whole, they contributed around 15 — 17% to the total 75 — 7¥7%7T (7, /v, ) rate,
again depending on the model. Certain aspects of the fit were also indicative of a
possible @} resonance, though this possibility is left for future potential analyses.

Contributions from the pseudoscalar 7' sub-resonances were generally statisti-
cally insignificant, though their minimal improvements to the fitted distributions
are shown to lie where one would expect. Upper limits are placed on each of the
7' contributions at 90% confidence. The results found for the pseudoscalar contri-
butions were used to place a lower limit on the average of the up and down quark
running masses [m = (m, + mgy)/2] that appear in the QCD Lagrangian [57]. This
produced a 90% confidence limit of (1 GeV?) > 8.3 — 14.2 MeV depending on
the model used, which, though higher than one might expect, is not unreasonable.

Principally, this analysis has endeavored to improve knowledge of the hadronic
structure in 75 — 777 ¥ (v, /v;) decays, and though the results are inherently
tied to model assumptions, they have been able to capably describe the various

characteristics in the data.
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Appendix A: The Lagrangian and the Principle of Least Action

This appendix provides a brief overview of the useful Lagrangian of classical
mechanics along with a basic description of the Principle of Least Action. See
Reference [36] for more detail.

A particle’s state in classical mechanics can be described by its position in
some set of coordinates, noted ¢ for brevity, and their time derivative, ¢ = dq/dt,
at some time t. The Lagrangian of the particle is defined as its kinetic energy (here

denoted T') minus its potential energy, V:
Lig,i,t) =T — V. (A1)

In general, the coordinates need not be the spatial position of the particle, but
can be any set that completely describes the state of the particle—they are called
generalized coordinates. Further, a system can be composed of many particles, and
its Lagrangian will be a sum over all the particles in the system. However, the
above notation will suffice for this discussion.

Let the system be found at some position ¢; at time ¢; and at some position
¢» at a later time f5. Omne can consider any given path through space-time that
would take the particle between those two states. The integral of the Lagrangian

over time along some given path is defined as the action (S) of the system:

S= / ® L), d(e). ). (A.2)

t1

The action can be calculated for any path, ¢(t), that satisfies the initial and final

conditions.
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One of the most general statements of the laws of motion in classical physics is
that a system moving between two states will follow the path that minimizes the
action.* This is known as the principle of least action (also known as Hamilton’s
principle). To derive equations of motion from that principle, one can begin by
assuming that the path of least action has been found to be ¢(¢). Then one can

consider any slight change to that path, d¢(¢) such that
q'(t) = q(t) +0q(t) and q'(t) = q(t) + 0q(1), (A.3)
and the initial and final conditions obviously require
dq(t1) = dq(te) = 0. (A.4)

The Lagrangian for this path can be expanded to first order to yield

Liq(t) + 6a(t), (1) + 84(1), 1) = L{q(t), 4(t), 1) + Z—jaq n g—;’aq-, (A.5)

and the difference between the action on the altered path and the least action

(found using L(q(t),¢(t),t)) is obviously

oL oL
0S8 = —9 —4q| dt. A.
S ) [aq q+aq q} (A.6)

The principle of least action is thus satisfied when S = 0. Applying this to

the above and integrating the second term by parts ([ udv = uv — [ v du, where

u = 2L and dv = §qdt) produces the following requirement:

aq
oL 1™ 279L d [(OL
o5 —[a—q5q] */tl [a_qW(a_q')]éth‘o' A

t1

*Strictly speaking, the path will produce an extremum in the action, but this
does not affect the results of this discussion.
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The first term vanishes due to the initial and final conditions (Equation A.4), and

to meet the requirement for all possible path perturbations, dg, the second term

oL d (0L
JES— —_— p— . A.-
dq  dt <3f1> ’ (48)

Given that ¢ can be a series of coordinates, this provides a series of equations

requires

defining the motion of the system. These are the well known Lagrange’s equations
of motion as derived from the principle of least action.

In the description of quantum mechanics developed by Richard Feynman, a
quantum system can follow any conceivable path between two states with each
path given the same amplitude but a different phase. The phase of a given path
is determined by the action equation, and the total probability amplitude for the
transition of the system is given by adding all the amplitudes given their respective
phases (some having phases that cancel one another and others having phases that
contribute more to the final amplitude). The principle of least action comes into
play in that the path of least action will contribute the most to the final amplitude.
This can be conceptually argued as follows: Because of the format of the action,
paths “near” the path of least action will have similar phases (the derivative of
the action near the path of least action is small). However, for paths that deviate
greatly from the path of least action, their phases can vary greatly and, as a result,
tend to cancel out one another. Thus, the paths that contribute most to the final

probability amplitude are those near the path of least action.
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Therefore, in quantum mechanics, the probability that a system will undergo
a given transformation receives contributions from every single path conceivable.
Those contributions only differ in phase determined by the action along each path,
and the path of least action provides the largest contribution. In general, the scale
that determines what paths are “near to” or “far from” the path of least action is
given by, in simple terms, the de Broglie wavelength of the system, A = h/p (which
in non-relativistic cases is h/muv). For classical systems (where m is large and the
A scale is small), paths even slightly different from the path of least action (and
thus the classical path of motion) tend to interfere in the final amplitude, which
is thus very nearly determined solely by the path of least action. For quantum
systems, one must consider a “cloud” of paths around the path of least action to
reasonably calculate the final amplitude.

Thus the Lagrangian and the principle of least action have a variety of impor-

tant implications in both classical and quantum physics.
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Appendix B: Notes on Four-Vectors and the Metric Tensor

The use of four-component vectors is perhaps most associated with Einstein’s
relativity, which linked space and time together into a single, four-dimensional
manifold*. The position in space where an event occurs and the time that it oc-
curs in a given frame of reference are linked to form the four-dimensional space-time
location of the event. By postulating that the laws of physics (including electrody-
namics) were the same for all frames of reference, relativity claims that the speed
of light should be the same for all frames, and that demands a specific relationship
comparing space-time coordinates between observers in different frames of refer-
ence. Here, a few notes are given for the interested reader on the implications that
arise from those relationships with regards to four-component vectors describing
space-time properties.

The basic geometry of space-time (or any manifold) is defined by the form of
its invariant interval in a given coordinate system on the manifold—the actual,
physical, space-time length between two infinitesimally close events, which must
be the same for all observers. In normal three-dimensional space, the distance
between two points in Cartesian coordinates is given simply by the extension of

the Pythagorean theorem to three dimensions:

ds; = dz* + dy* + d2°. (B.1)

*The formalities of four vectors can be found in a variety of texts, including [78].
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Regardless of how one chooses to describe the space the two points are sitting in,
that distance between them is a physical reality that doesn’t change. For example,
a rotation of the coordinate system can change dx, dy, and dz, but not the length
given by the above combination.

For space-time in the absence of a gravitational field (“flat” space-time), the

proper infinitesimal interval is given by*.
ds® = cdt® — (do* + dy® + dz°), (B.2)

where ¢ is the speed of light. Through relativity, the distances in the individual
components of space and time between two infinitesimally close events are different
for different observers, but this interval is always the same—it is the physical space-
time distance between the two events. Its format defines all the consequences of
special relativity (such as “time-dilation” and “length-contraction” effects as well
as the connection between energy, momentum, and mass).

For convenience of notation, one often defines

P =ct, z'=2 2*=y, and 2*=z2, (B.3)

and a generic invariant interval (for flat or curved space-time), can be written in

terms of a 4 X 4 matrix, g.

3 3
ds* = Z Zgw(dx“ dz”) = g datdz”. (B.4)

pn=0 vr=0

*One could equivalently choose to use ds? = —cdt? + dz? + dy® + dz? without
changing the resulting mathematics.
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The final equivalence defines a summation notation known as Einstein’s summa-
tion convention in which repeated indices in the upper and lower positions imply
summation.

The invariant interval (and the geometry of a manifold) is thus completely
determined from the form of g, which will transform as a tensor. It is known as
the metric tensor (or simply the metric). Describing its significance another way,
the format of the metric takes all the geometry of the manifold into account as it
generates (among other things) the invariant interval. For flat space-time noted

above, the metric is obviously given by

Guv = . (B5)

The metric is a powerful tool, defining various proper mathematical opera-
tions in the given space. Consider a vector 1% being transformed from one set of
coordinates (x) to another (x). The vector’s components transforms as

ozt

v =1
oxv’

(B.6)

using the summation convention. However, other forms of vectors exist that trans-
form in a different way (e.g., a vector whose components are formed from the
derivative of a scalar function with respect to each coordinate: V#* = of/0x"):

ox?

Ve =V
ozt

(B.7)
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Given that basis vectors transform like the latter case, the former (a “usual” vector)
is often called contravariant (and their indices are placed in a superscript, as shown)
while the latter is called covariant (distinguished by placing its indices in the
subscript). However, for any contravariant (or covariant) vector there exists an
associated covariant (or contravariant) vector, which can be found by “lowering”

(or “raising”) the index using the metric tensor:

Vi, = guuvu; (BS)

where one again uses Einstein’s summation convention®.
What one might call the “proper dot-product” (or scalar product) of two vectors

in some space is then given by

v-v =v,0" = g, v7o". (B.9)

As with any proper scalar, this always produces a result that is independent of
the coordinate system used. Just as with the invariant interval (which can now be
written ds? = dx,dz"), the form of the metric in different coordinates (or frames
of reference) takes the effects of those differences into account to produce an in-
variant scalar. The metric is also used to find the proper gradient, divergence,
etc. on a given manifold using some given set of coordinates in which the metric
is defined. In the curved space-time of general relativity, the metric tensor de-

scribes the curvature and ultimately determines the equations of motion caused

*For the metric tensor, one finds g from the inverse of g, which for a diagonal
metric means ¢"* = 1/g,,, if g,, # 0 and ¢"” = 0 otherwise.
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by Einstein’s gravity. Because it is the mathematical description of a manifold’s
geometry, regardless of how complicated the manifold or the mathematics describ-
ing a geometrical problem on the manifold, at the heart of it is always the 4 x 4
metric tensor.

Returning to the discussion of four-vectors in flat space-time, the four-dimensional
location of an event is but one combination that produces a proper four-vector.
If a particle has energy F and three-momentum p, then its four-momentum can
be formed as a proper four-vector, written here as: p=(FE, ¢p). Thus energy is
simply the time component of the particle’s momentum. The scalar product of a
particle’s four-momentum must define some invariant value, which turns out to be

the particle’s mass, in accordance with relativity:

P'pp = (0°po +p'p1+ P2+ D’ps)
= P"(g0up") + P' (g10") + P*(gopp") + P*(g3u0")
= ()= - @) - )’ (B.10)
= B2 =c[(p")?+ )+ (")
= m2ct.

=

In electrodynamics, the charge density (p) and the current density (J) form a
proper four-vector, J = (cp, J) as do the scalar (V) and vector potential (J); and
various vector manipulations form laws of electrodynamics.

Four-vectors are extremely useful tools in all realms of physics, and are used

extensively in high energy physics as well as sections of this dissertation.
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Appendix C: Common Wave Equations

Basic wave equations in quantum mechanics arise from the classic Hamilto-
nian.* The Hamiltonian is an equation for the total energy of a system, which
can be derived in general from the equations of motion governing the system.
For example, from a basic Lagrangian as discussed in Appendix A (L(q,q)), the
Hamiltonian is given by

H=¢>" L. (C.1)

For Newtonian physics, the Hamiltonian is the kinetic energy (7) plus the potential
energy (V): H =T + V. By substituting quantum mechanical operators into the
Hamiltonian, a wave equation is produced.

One can intuit the operators for momentum and energy by first considering a
standard plane wave with wave number £ and angular frequency w (in one dimen-

sion for brevity):

W(x,t) = Aelthe=wb), (C.2)
The wave length (A\) and frequency (v) of the wave are related to k and w as

2
k= Tﬂ and w = 27v. (C.3)

If this describes an electromagnetic wave, then the quantization of electromagnetic

energy requires

EF=hvr=hw and p=

>

= hk. (C.4)

*The concepts presented here can be found in a number of quantum mechanics
texts including [23,79].
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Noting the similarity between quantization of states and allowed frequencies
for standing waves, and noting that the quantum picture of electromagnetic inter-
actions requires particle-like and wave-like structures, Louis de Broglie argued that
the quantum theory of matter should adopt a similar dual picture. The matter-
wave hypothesis assigns a wavelength (the de Broglie wavelength) to any particle

given its momentum, p, in accordance with the above description for the photon:
A=—. (C.5)
p

One can then apply the above energy and momentum notations to the Hamil-

tonian for, say, a non-relativistic particle of mass m (where T = mv?/2 = p?/2m):

2 h2k2
E=2 1v = jhw=
2m 2m

+V. (C.6)

If V' is an arbitrary constant in space and time, then the above relation does not
cause it to affect derivatives of w and k. In that case, given that the matter-wave is
assumed to be described via Equation C.2, it can be noted that the above equation

is obtained by interpreting F and p as operators acting on the wave function:

~_ 0 . .0
E%H:zha and p%p:—zh%, (C.7)

such that the energy equation above becomes a wave equation:

~ ~2

AU(z,t) = ;’—m\p(x,t)+vqf(x,t), (C.8)

TThe Bohr atom can be seen in this picture by requiring the electron to be a
standing wave with integer de Broglie wavelengths (A = h/p) around the circum-
ference (27r) of its orbit: 27r = nA so r = nfi/p such that L = pr = nh is the
obviously quantized angular momentum.
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0 B 0?

Zha (A ei(lcx—wt)) — _2—W (A ei(lcx—wt)) +VA ei(kx—wt),
mox
21.2
hwA ei(kwfwt) — h2k A ei(kmfwt) +VA ei(kmfwt),

m

h2k?
hw = +V,
2m

thus producing the same results as Equation C.6.* Though the assignment of
operators for energy and momentum and the generated wave equation cannot be
considered derived results, the hypothesis yields a variety of quantum mechanical

predictions that match measurements on physical systems.

C.1 The Schrodinger Wave Equation
The Schriodinger wave equation is produced by writing Equation C.8 in three

dimensions and allowing the potential to be an arbitrary function:

[ . Lo 0
—%V U(Z,t) + V(Z,t)U(Z,t) = zhalﬁ(x,t). (C.9)

It describes the quantum mechanical nature of a non-relativistic particle in a po-
tential, V. The exact form of the wave function, ¥, is determined by the form of
the potential.

For a free particle (V = 0), the Schrodinger equation becomes

0 ih 0?

and the basic solution gives the wave function for a free, non-relativistic particle:

& = ilPE=?/2m)], (C.11)

*The fact that V can be any arbitrary constant, including zero, without chang-
ing the given results is an indication of a type of gauge invariance as discussed in
Section 1.12.
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C.2 The Klein-Gordon Equation

In the relativistic case, the energy equation for a free particle is given by the
quadratic relation

E? = p?c® + m*c. (C.12)

The non-relativistic case is, of course, derived by expanding the energy in terms of
p/mc (E ~ mc®+p*/2m) and, as with the case of an arbitrary constant potential,
the mass energy can be ignored in the classic case (thus using £ = T + V rather
than E =T + V 4+ mdc?).

Applying the energy and momentum operators to the relativistic case produces

the Klein-Gordon equation:

2
v
h2887 = h2EVAU — m? . (C.13)

Solutions to this equation describe free, relativistic, spinless particles. For a mass-

less particle, the Klein-Gordon equation becomes

1 020
= —— 14
v ¢ ot2’ (C.14)

which is precisely the equation for a classical oscillating wave traveling at velocity
c. This equation can be used to describe either the electric or the magnetic portion

of an electromagnetic wave, and for both cases it can be derived from Maxwell’s

equations where ¢ = /l,€9.* The solution to Equation C.14 thus describes a free

*In Maxwell’s time, po and €, were separate, experimentally determined con-
stants governing electric and magnetic effects in free space. Their combination
in the wave equation implied that light was an electromagnetic wave with speed
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photon, but only if we argue that the equation describes two separate components
of the photon’s wave function—the E and B fields described in Maxwell’s equa-
tions where they are coupled together in first order differential equations. This
interpretation allows for the description of the spin-1 photon.

Finding useful solutions to the Klein-Gordon equation to describe a single,
massive particle proved problematic due to its second order nature. In one sense,
the proper relativistic energy equation to use is £ = j:c\/m, though this
doesn’t lead to an obviously derivable wave equation. Dirac’s approach provided
a solution for this problem (as well as an interpretation for the indicated negative

energy state).

C.3 The Dirac Equation

Dirac’s formulation of the relativistic wave equation is analogous to the massless
photon solution in which its wave must be described with two components, each
of which satisfy the second-order wave equation, but which are also linked in first
order differential equations. He assumed that only first order derivatives of both

space and time should appear in the wave equation. The results describe spin-

% particles. The idea can first be applied to find solutions for massless, spin—%

particles (neutrinos) by forming the two Weyl equations, which differ in sign:

100 L
2T 4 45— C.15
ot .laaxz 7 o (C.15)

1=

¢ = /Ho€y. As it turns out, if electrodynamic laws are frame-independent, then
so are these constants and thus the speed of light is frame independent—the basis
for special relativity.
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where the o’s are constants of a form to be determined. The equation is also
required to satisfy the Klein-Gordon second order equation, and thus squaring the

above and setting it equal to Equation C.14 yields

3

2 2
1w Z(ﬂ)?a‘?

@ o ()’
0?W 0% 0%
12 1 3 2 3
oo }8x18x2 oo }8x18x3 oo }8x28x3 (C.16)
3
0*W
VA = .
o o)
where {X,Y} = XY + Y X. The equality then requires
o o 1 if 1=y
o'o’ + 0’0" =26;; where §;; = (C.17)
0 if i

Given these requirements, the o’s cannot be numbers but must be matrices. In

one (but not the only) solution, they are the 2 x 2 Pauli spin matrices:

0 1 0 —i 1 0
ol = , ot = e : (C.18)
10 i 0 0 —1
where
_ 10
o’ = (0")? = : (C.19)
01

Since the wave function is acted on by these matrices, it must now have two
components (somewhat analogous to the requirements of both electric and mag-

netic components to describe a photon wave):

vy
U= . (C.20)

\
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The addition of the mass term to the wave equation produces the Dirac equa-

tion, which can be written

Yy OV imey, _y, (C.21)

0

where x° = ct. Requiring that the second order Klein-Gordon equation also be

met produces a similar results as before:
Ty = 29", (C.22)

where ¢"” is defined in Appendix B. However, here four matrices are needed, and
one property of the Pauli matrices is that there is no fourth 2 x 2 matrix that can
meet the needed requirements and is independent of the already defined o’s. The
simplest set of four matrices that will meet the requirements are 4 x 4, and one

solution is often written

70 = and ~F = for k=1,2,3, (C.23)
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where O represents the 2 X 2 zero matrix and 1 is the 2 x 2 identity matrix. Written

out fully, the y-matrices are thus

1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0
7 = v =

0 0 -1 0 0 -1 0 0

0 0 0 —1 ~1 0 0 0

) ] ) ] (C.24)

0 0 0 —i 0 0 1 0

0 0 i O 0 0 0 —1
V= v =

0 i 0 0 -1 0 0 0

i 0 0 0 0 1 0 0

The product of the 7’s is also a useful matrix and is often defined 7 (not ~*

because it is used rather than 4% in some notations):

0 0 —1 0

5_ - 0.1.2.3 0 0 0 -1
7 =i’y = : (C.25)

—1 0 0 0

0 —1 0 0

Solutions to the Dirac equation (four simultaneous equations) are four com-

1

ponent wave functions called spinnors, which describe free spin-; fermions. This

is the origin of the general notation |¥|> = WUTW rather than the less general
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|U|? = U*W. One can thus write

(3

P
U= and U = [T} U5 Ui 03], (C.26)

Wy

Uy

Four “basis” solutions can be found for the Dirac equation,” and because of the
form of the Dirac’s approach, it turns out that two of the solutions are associated
with positive energy states, while the other two are associated with negative en-
ergy states. Dirac conjectured that the negative states comprised a sea that was
completely filled. When a negative energy electron received enough energy to put
it into a positive state, the “hole” left in the sea could be interpreted as having
properties of an antielectron (this then is a description of pair production). Thus
Dirac correctly predicted antimatter.

The y-matrices act on the wave functions to produce a variety of useful oper-
ations. For example, 7 is the parity operation for the spinors. It is also useful to
define the notation

U = Wiy (C.27)

such that ¥4° = ¥ and ¥ is also a solution to the Dirac equation.

*Specific solutions are given in [25].
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Five independent combinations of the operators can be identified by their

Lorentz behavior (see Section 1.7.7):

scalar (S): WU = Uiy,
pseudoscalar (P): W50,
vector (V): Wy ¥, (C.28)
axial vector (A): WUr°y" W,
tensor (T): Wy YT,
The y-matrices thus provide various operations for forming matrix elements
that describe fermion interactions given the transformation properties governing

the interaction.
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Appendix D: A Simple Example of a Symmetry Group

To present a basic example of symmetry for the interested reader, the symmetry
operations on an equilateral triangle will be briefly discussed here. Such a triangle
is presented in Figure D.1. One example of a symmetry operation on the triangle
is that of rotating it clockwise by 120° (noted Rjg), which leaves it looking the
same as it did before. Similarly, one could rotate it by 240° (Ra4). However,
continuing the trend to turn it 360° returns it back to its original orientation, and
there is no difference between such an action and the identity operation (1, which
is effectively defined as doing nothing to it). Similarly, rotating counter-clockwise
only reproduces either one of the two rotations already defined or the identity

operation.

i
Figure D.1

An equilateral triangle with vertices and symmetry axes marked.
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Three axes are also also shown on the diagram denoted I, I, and I11. By re-
flecting the triangle through any of these axes, one produces a symmetry operation
unlike any of the rotations. These reflections are denoted R;, R;;, and R;;;. Thus
the complete set of operators under which the equilateral triangle is symmetric
consists of the operators 1, Ria9, Roso, Ry, Rrr, and Ryjy.

By performing one operator after another, one can create various combinations.
For example rotating by 240° places the vertex labeled B in the upper position,
followed clockwise by C' in the lower right, and A in the lower left. If one then
reflects the triangle through the I axis (which doesn’t move with the operations),
then A and C trade places, leaving the sequence (starting from the top and going
clockwise) as B, A, then C. However, this is the same as a single reflection through

the 111 axis, and one can thus write:

Rr x Ras = Ry, (D-l)

where the x symbol is defined as first performing the operator to its right, then
the one to its left™.

Further, following an Ry49 by an Ry produces the same results as the identity
matrix. One thus sees here the possibility of these operations forming a group
by satisfying the conditions given in Section 1.10. Table D.1 gives the results of
performing an operation across the top followed by an operation down the left

side (note that the ordering does matter). The result of the two operations is

*This direction of notation is chosen to reflect the action of having two operators
act on a wave-function, BAW, in which the one to the right acts first.
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Table D.1

Combinations of symmetry operators on an equilateral triangle.

Operator A

BxA| 1 Ry Rwu Rr R R

1 1 Ria Raw Ry R R
Rigo | Rizo Roso 1 Ryr Rr Rp
Rogo | Roaso 1 Rizo Rir Rur Ry

Ry Ry Rip Riur 1 Rio R

Operator B

RII RII RIII RI R240 1 R120
RIII RIII RI RII R120 R240 1

given by the matching entry in the table. The reader can then easily verify that
the set meets all the group requirements listed earlier. Specifically, this is the full

symmetry group of an equilateral triangle and an example of a finite group.
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Appendix E: A Simple Example of Spontaneous Symmetry Breaking

A simple example of spontaneous symmetry breaking can be demonstrated [23]
by considering a particle with wave function 1 that obeys the Klein-Gordon equa-
tion (see Appendix C). However, one allows the mass term in the equation to

include contributions proportional two the probability density (¢7)):

m? = p? + MpTep. (E.1)

Since 911} is invariant under a phase transformation on ¢, the equation of motion
will still possess that gauge invariance.

Because one generally wishes to solve equations of motion perturbatively by
expanding around the lowest energy state, the value(s) of the parameter A of
interest are those that minimize m for the given p. If 12 is allowed to be negative
(though keeping m real), the solution for the lowest m state becomes mpyi, = 0

when

Il
Sy

12
gl = -1 = ¢2 (E:2)
A
or, letting the real and imaginary parts of ¢ be denoted ¢r = Ry and 1y = I
respectively:
Ui+ Y= a’. (E-3)
That solution is simply the equation for a circle of radius a in the complex plane.

Note that only the overall complex radius (or modulus) of 1) matters, and not its

phase (i.e., a symmetry concerning the phase still appears to hold).
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However, to expand around the lowest energy state, a specific solution to the
above equation (and therefore a specific phase for ¢) must be chosen (e.g., ¥r = a,
1y = 0). This choosing immediately “hides” or breaks the symmetry by demanding
a specific phase. As one tries to impose local gauge invariance by, as before,
including some field, A,, the spontaneous breakdown of gauge invariance manifests
itself by making the field’s range finite, and thus its gauge bosons are no longer
massless.

The Higgs mechanism that provides mass to the W* and Z° is more com-
plicated than this due to its more complex gauge invariance under SU(2)xU(1);
however, the example given here provides insight into the general notion of sym-

metry breaking.
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Appendix F: The Lepton Tensor in 7= — 77 %7F (v, /v,) decays

In the 7% — 757%7T (7, /v,) differential decay rate, the lepton tensor appears
from the square of the lepton current in the matrix element as noted in Section 5.2.
The general, well understood form of the lepton tensor is given in [64] and is
repeated here for completeness.

The lepton tensor can be written as four components:

1
where
29vga
VWA= —5—-5. F.2
7+ 2

In the standard model, the relative V and A couplings are equal such that gy =
ga=va =1L

Noting the 4-momentum of the initial 7 as q, the 4-momentum of the final state
neutrino as q', and the polarization 4-vector of the 7 as s, the four components of

the lepton tensor are given as
L, = 4{¢,q}w,
wa = —4im; €apu ¢S5,
L3, = —4di€apuq ",

L;lu/ = 4m7{57ql}uw

where the following notation has been used:

{a, b} = a,b, + bua, — a®by g, (F.4)
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and €qp,, is the four-dimensional Levi-Civita symbol.* The metric tensor used

here is the same as defined in Appendix B.

Note that the polarization 4-vector satisfies the following:
qus" =0 and s,s" = —P? (F.5)

where P is the polarization of the 7 in the lab frame. At CESR, 7 pairs are

produced unpolarized, and thus P = 0 for the analysis reported herein.

*If (aBuv) can be formed by performing an even number of permutations
(switching two adjacent indices) on (0123) then e,g,, = 1 (e.g., €p123 = €1032 =
€1320 = 1). If they can be formed by an odd number of permutations on (0123)
then €afur = -1 (e.g., €0132 — €1023 — €1230 — —]_) Finally, if any of the four
indices are equal, then €,s,, =0 (e.g., €23 = €101 = €3132 = 0).
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Appendix G: Another Description of the Decay
A useful description of the 7& — [37])*(,/v,) decay can be found in [64] and

will be presented here.

G.1 The S and S’ Systems

Two frames of reference are defined—one useful for describing the lepton dis-
tribution and one useful for describing the pion distribution. The two are then
related through an Euler rotation, thus completely describing the decay.

Both systems are defined in the 37 rest frame. The S’ system allows for a
simple description of the 7 direction. The 2z’ axis is defined in the direction of the
laboratory (nr,) as viewed from the 37 rest frame (thus the direction of the 37 rest
frame in the laboratory system can be denoted ng = —ny). The 2’ axis is then
defined such that the direction of the 7 as seen in the 37 rest frame (n,) is in the
(«',2")-plane. The angle between 7, and the 2’ axis is defined to be v (which can
be found without measuring the overall 7 direction—see below). Note that in the
3 rest frame, the direction of the v, is n,. = n,. The y’ axes is then defined to
produce a right handed system (¢’ = (n x n.)/|n; X n,|). See Figure G.2 for a
graphical description of S’.

The S system allows for a simple description of the hadronic tensor. The
(x,y)-plane is aligned with the three pion momenta, which lie in a plane in the
37 rest frame. The x axis is defined in the direction of g3 (recall that the “third”

pion was defined in Section 5.1 as the one whose charge differs from the other



241

two). The z axis is then defined in the direction of the normal to the 37 plane

(2=n1 = (¢ X §)/]q1 X ¢2]), and the y axis is defined as needed to produce a

right handed system. See Figure G.1 for a graphical description of S.

The two systems, S and S’, are related through an Euler rotation (R):

where

R(a, 3,7)

CaCBCy —

—CaCBSy — SaCy

S5Ca

7= R(a, B,7)7",

0 Ca 0 —Sg

0 0 1 0

1 Sa 0 Cp
SaSy  SaCgCy + CoSy

—SaCpSy + CuCy

SSa

(G.1)
Ca So O
—Sq Cou O
0 0 1

(G.2)
—SgCxy
S+ ;
Cy

and in which one defines the notations ¢, = cosz and s, = sinz.

Given this rotation, the Euler angles are defined as follows: The azimuthal

angle « is defined as the angle between the (ny,n,)-plane and the (17,7, )-plane.

Calculating this angle requires knowledge of the 7 direction:

cosa =

sina =

(ﬁ@ X ﬁT)'(ﬁL X ﬁl)

|ﬁL X ﬁ7||ﬁL X ﬁL|’

A - (R X 1)

CaL x| A X |
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X =9,

Figure G.2
Figure G.1 .

A representation of the S’ system de-
A representation of the S system de- fined in the 37 rest frame. The 2’
fined in the 37 rest frame such that and 2’ axes are defined such that ¢,
z is perpendicular to the 37 plane lies in their plane (¢ being the angle
and r = ¢3. Also shown are two of between 2’ and the 7 direction in this
the Euler angles, 3 and v (see Fig- frame).

ure G.3).

Z=N.  7=7

X =10
Figure G.3

A display of the eular angles, «, 3, and v, which relate the S frame to the S’ frame.
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The polar angle  denotes the angle between n, and ny. It can be defined without

knowledge of the 7 direction:
cosB=nr-n, (0<p<m). (G.5)

Finally, the angle v is a rotation about n, and determines the orientation of
the pions with their production plane (i.e., v denotes the angle between the
(¢',2)=(nr,ny)-plane and the (z,2)=(n,,d3)-plane). As with 3, v can be defined

without knowledge of the 7 direction:

ﬁL ) (_?3
cosy = —————, G.6

siny = (LX) G7)

|ﬁL X fu|
The Euler angles are displayed in Figure G.3, while 3 and 7 are reiterated in

Figure G.1.

G.2 Describing the Decay

Using these two frames, and assuming knowledge of the three Euler angles, one
can describe the decay fully in the laboratory frame as follows: Given Q?, s;, and
S9, one can construct the S system by defining the pion momenta as measured in

the 37 rest frame:
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§ = B o= LosEms
2Q
G = VEF—m3,
G = 0
G = 0
¢ = (2B:E; — s, +2m2)/(24}), (G.8)
¢ = —VE —(g)?-mZ
% =0,

qf = (2E1E3 — s34 2m2)/(2q3),

¢ = VEI—(q))?—mZ=—¢,

qg; = 0.
The three Euler angles are then used to rotate the S system to the S’ system

(7' = R~ (a, B,7)7 = R(—~,—f,—a)¥). In this system, the direction of the 7 is
defined given ), which can in turn be calculated given Q?, the energy of the 37
system in the lab (E3;), and the energy of the 7 in the lab (E;):

. E37r(m72— + QQ) - 2E7Q2
(m?— - QQ) V E?%ﬂ - Q2

The 2’ axis establishes the direction back to the lab frame, and given Ej3, it is

(0 < <7/2). (G.9)

possible to boost the pion momenta and the 7 direction from the S’ frame back to
the lab frame. (Alternatively, it is possible to transform E; to S’, thus completely
describing the decay in that system.) To complete the description of the event in

the lab system, one must rotate the boosted S’ system to the lab system. However,
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if one is not interested in the orientation of the decay in the lab, a full description
of the decay can be found given Q?, sy, s9, @, 3, 7, E3r, and E, (the last of which
can, as noted in Section 6.1, be found from Epeam and E,). Of those, « is the only
variables that depends on full knowledge of the 7 direction.

As an alternative, F5; and E. can be replaced by cost and cosf. The angle
is defined as the angle between the direction of the 7 in the laboratory rest frame
and the direction of the hadrons as seen in the 7 rest frame. As with cos, it is

possible to calculate cos @ from Q?, Es., and E,:

E.(m? + Q%) — 2E3,m?
(m2 — Q)BT —m

A complete description of the decay in the S’ system can thus be defined given

cosf = — (G.10)

Q?, s1, s2, a, 3, 7y, cos B, and cos 1.
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Appendix H: The ~ Distribution
The distribution in v will be described here in a similar fashion to its description
in [57]. Integrating the basic differential decay rate given in [64] over o and [

(defined above), one finds the following at a given E, (or, ideally, at a given beam

energy):

27172 2 2\ 2 9 9
- 2
dF(Q2781;S27fY, COS 9) = GFVUd (m'r Q ) mZ; + Q

128 m,(27) 2 3m2
o ¢ (H.1)
X W(Q?, 51, 59) w(v,Q? 51, 52, cos 0) dQ2d31ds2;i_7dcgsea
m

where W gives the differential decay rate integrated over all angles, and is defined

in terms of the hadronic structure functions in [64] as follows:

3m2
2 _ T
W(Q%, s1,82) = Wa + WWSA (H.2)

Note that the W, term is composed of second order terms in the F} and F; form
factors; however, the Wgs, term is dependent on the square of the minute scalar
form factor (Wss = Q?|Fy|*) making it insignificant in the makeup of W,

The w factor can be thought of as the normalized distribution in the azimuthal

angle v for a given (Q?, 51, so, and cosf. It can be written as follows:

w(v, Q% 51,52,c080) = 1+ A\y(Ac cos 2y + Apsin2y) + A (Agp cosy + Agp siny).
(H.3)
The Ac and Ap coefficients involve terms chiefly dependent on the F} and F; form

factors. They are “large” in that they are O(1) in the chiral limit. In terms of the



247

structure functions, they are defined as follows:

m2 — Q2 WC m2 — Q2 WD
A — T > A - _Tr v . H4
T mry@ W P my @ w (F.4)

The Agp and Agp coefficients are chiral symmetry breaking quantities dependent

on combinations of FiFy and FyF} interference terms. In terms of the structure

functions, they are defined as follows:

3m3 WSB A . ™ 3m3 WSD
SD —

T
Agp = = _r _
BT Amz Q2 W Am2+2Q2 W

(H.5)

Finally, the A\; and Ay coefficients in Equation H.3 describe distributions in cos 1),
which is a non-trivial function of Q?, cos, and E, (as can be inferred from Equa-
tions G.9 and G.10, the equations for cos ¢ and cos 6 respectively, in Appendix G).

The )\, functions are defined in terms of the Legendre polynomials, P,,:

M (Q? cos 0, E,) = Py(cos ). (H.6)

Therefore, though the reliance of \, on Q?, cosf, and E. is generally non-trivial,
for any event one can calculate )\, by way of calculating cos .

In Equation H.3, the presence of non-zero scalar effects would be indicated by
asymmetries in the 7 distribution (specifically, in the existence of Agp and Agp
terms). For the greatest sensitivity to these terms, one could hypothetical use a
large data set and examine the v distribution in bins of Q?, s;, and s,. However,
even integrating over all other factors, the presence of any non-zero scalar effects

would be expected to show up in the distribution of .
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Appendix I: Placing a Lower Bound on the Light Quark Masses

As developed in [57] and noted in Section 3.1, experimentally extracting in-
formation regarding the scalar effects in 7% — 757577 (v, /1) decays allows one
to place a lower limit on the light quark running masses in the QCD Lagrangian.
The QCD Lagrangian involves seven parameters that must be experimentally de-
termined: the gauge coupling constant (denoted g) and six quark masses. After
renormalization, these parameters become scale dependent, thus the term “running
masses.” Hadronic 7 decays provide a unique source of information concerning the
light quark running masses, m,, mg, and m, because they determine the absolute
strength of chiral symmetry breaking in such decays. This follows from the fact
that the divergences of observable axial and vector weak-transition currents are

given by the following:

O (dyuysu) = (mg+my)divsu,
O (svuvsu) = (ms +my)sivsu,
O (dyuu) = (ma—my)idu,
oH(syuu) = (ms —my)isu.

In particular, the 7 — [37]*(#,/v,) decay contributes to m, + mg, and the
average of the two will be termed m = (m, + mgy)/2. The other combinations
(ms + my, mg — m,, and my — m,) could, in principle, be studied using 7 decays
to Knnv,, Knv,, and nrv, respectively [57].

Extracting information on 7 involves the spectral function p(Q?), which mea-

sures the amount of explicit chiral symmetry breaking at squared momentum trans-
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fer Q2. Tt is given by the expression

§(@) = 5= S m)5(Q — P, (0l (o) (12)

n

where the sum extends over all states with quantum numbers of the pion and with

squared invariant mass P2 = Q%

n =% nEfrtrT w a7l E T a0R0 L. (1.3)

For large (9%, QCD perturbation theory gives the following expression for the spec-

tral function [77]:

§@) - o @@ {1+ F L)

Therefore, measurement of p(Q?) at sufficiently large Q? provides a measurement of

m(Q?). The spectral function can be separated into several individual components:

P(Q) = pr(Q%) + p3x(Q%) + prcicn (@) + psm + - -, (.5)

where only the one pion contribution is well known given the pion mass and the

pion decay constant, f:
pr(Q°) = 27mz8(Q° — m3). (1.6)

The remaining components must be experimentally determined.
The ps3,(Q?) component contains two contributions, pt,+ 7 and pr+,0.0,
though isospin symmetry implies that

5
P3r > privriw¥- (17)
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Therefore, by experimentally determining the value of p,+,+,%, one can place

better a lower limit on p(Q?). Tt is useful to define

P(Q) = pe(@) + Spesrsnr (@), (1)
such that
p(Q%) = p'(Q). (1.9)

Experimental determination of p,+,+,+ and its contribution to the light quark
running mass is problematic for two reasons: First, p,+,+,¥ is given by the square
of the J = 0 contribution to the decay rate, which, as previously discussed, is mea-
ger and difficult to measure. As noted in Appendix H, interferences between the
J =0 and J = 1 components provide the most reasonable potential for detecting
the scalar contributions and deriving the square of its amplitude. Given such a
determination of the amplitude of the scalar form factor, |Fy(Q?, s, s2)|, one could

then find:

QZ

2y
pTI'iTI'iW:F(Q ) - 5127_‘_4

/‘F4(Q2,81,82)‘2d81d82. (I.10)

Secondly, Equation 1.4 implies that Q% is known over a large, asymptotic region,
though Q? in 7* — 717 F (1, /v, ) decays is obviously limited by m? and strongly
suppressed as Q* — m?2. This issue is resolved by the use of QCD sum rules as
noted in [57]. A final equation is presented for a lower bound to 72, which can be

written

i) = (i) [ Rt + 20005 [ p@iac,

(L.11)
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where f is the running variable, while the two-loop expression for Rs(sg) and the
value of the dimension-4 condensate C;(Oy4) are discussed in [77]. The variable
so represents a squared cutoff mass and introduces a source of systematic error

arising from imperfections in the method. It is taken to be within a typical range
2 GeV? < s < m?2, (1.12)

and m'io(;ﬂ) is not expected to depend strongly on its value within that range.

Therefore, by experimentally determining the amplitude of the scalar contri-
butions in 75 — 7¥7* 7T (v, /1) decays, one could add to the knowledge of the
spectral function, p(Q?), and place an improved lower limit on the running mass
of the light quarks:*

m(p?) > m's, (1%). (L13)
An acceptable theoretical estimation constrains m at u =1 GeV to the range
4 MeV < m(1 GeV?) < 50 MeV, (I.14)

though it would be difficult for standard chiral perturbation theory to support a
value of 7 significantly higher than ~ 10 MeV [57]. One should also note that the
light quark massess reported in the PDG [29] are for u = 2 GeV, which must be
multiplited by 1.35 to compare to the case were y =1 GeV. The range for m they
report, when properly scaled, suggests 3.4 MeV < m(1 GeVQ) < 8.1 MeV.

Thus, placing a lower limit on m provides a test for chiral perturbation and

helps to quantify the statement that the u and d quark masses are not zero.

*The one-pion contribution alone suggests (1 GeV?) > (4 — 5) MeV.
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